
PARADISE: Criticality-Aware Instruction Reordering for Power Atack

Resistance

YUN CHEN∗, National University of Singapore, Singapore, Singapore

ALI HAJIABADI∗, School of Computing, National University of Singapore, Singapore, Singapore

ROMAIN POUSSIER, Nanyang Technological University, Singapore, Singapore

YASWANTH TAVVA, National University of Singapore, Singapore, Singapore

ANDREAS DIAVASTOS, National University of Singapore, Singapore, Singapore

SHIVAM BHASIN, Temasek Laboratories @ Nanyang Technological University, Singapore, Singapore

TREVOR E. CARLSON, National University of Singapore School of Computing, Singapore, Singapore

Power side-channel attacks exploit the correlation of power consumption with the instructions and data being processed

to extract secrets from a device (e.g., cryptographic keys). Prior work primarily focused on protecting small embedded

micro-controllers and in-order processors rather than high-performance, out-of-order desktop and server CPUs. In this paper,

we present Paradise, a general-purpose out-of-order processor with always-on protection, that implements a novel dynamic

instruction scheduler to provide obfuscated execution and mitigate power analysis attacks. To achieve this, we exploit the

time between operand availability of critical instructions (slack) and create high-performance random schedules.

Further, we highlight the dangers of using incorrect adversarial assumptions, which can often lead to a false sense of

security. Therefore, we perform an extended security analysis on AES-128 using diferent levels of adversaries, from basic to

advanced, including a CNN-based attack. Our advanced security evaluation assumes a strong adversary with full knowledge

of the countermeasure and demonstrates a signiicant security improvement of 556× when combined with Boolean Masking

over a baseline only protected by masking, and 62, 500× over an unprotected baseline. The resulting overhead in performance,

power and area of Paradise is 3.2%, 1.2% and 0.8% respectively1.

CCS Concepts: · Security and privacy→ Side-channel analysis and countermeasures; · Computer systems organiza-

tion → Architectures.

Additional Key Words and Phrases: Power Analysis Attacks, Side-Channel Attacks, Secure Microarchitecture, Instruction

Reordering

1 Introduction

Power, electromagnetic (EM), and temperature analysis attacks, also called side-channel attacks, exploit the

physical parameters of the processor to extract secret information. The system continues to operate normally

∗Both authors contributed equally to this research.
1New Paper, Not an Extension of a Conference Paper.

Authors’ Contact Information: Yun Chen, National University of Singapore, Singapore, Singapore; e-mail: yun.chen@u.nus.edu; Ali Hajiabadi,

School of Computing, National University of Singapore, Singapore, Singapore; e-mail: ali.hajiabadi@u.nus.edu; Romain Poussier, Nanyang

Technological University, Singapore, Singapore, Singapore; e-mail: romain.poussiercr@gmail.com; Yaswanth Tavva, National University of

Singapore, Singapore, Singapore; e-mail: yaswanth@u.nus.edu; Andreas Diavastos, National University of Singapore, Singapore, Singapore;

e-mail: andreas@nus.edu.sg; Shivam Bhasin, Temasek Laboratories @ Nanyang Technological University, Singapore, Singapore, Singapore;

e-mail: sbhasin@ntu.edu.sg; Trevor E. Carlson, National University of Singapore School of Computing, Singapore, Singapore; e-mail:

tcarlson@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/10-ART

https://doi.org/10.1145/3701991

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0000-0001-8314-6985
HTTPS://ORCID.ORG/0000-0002-3219-7544
HTTPS://ORCID.ORG/0009-0004-2255-4087
HTTPS://ORCID.ORG/0000-0002-5251-288X
HTTPS://ORCID.ORG/0000-0002-7139-4444
HTTPS://ORCID.ORG/0000-0002-6903-5127
HTTPS://ORCID.ORG/0000-0001-8742-134X
https://orcid.org/0000-0001-8314-6985
https://orcid.org/0000-0002-3219-7544
https://orcid.org/0009-0004-2255-4087
https://orcid.org/0000-0002-5251-288X
https://orcid.org/0000-0002-7139-4444
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0001-8742-134X
https://doi.org/10.1145/3701991
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701991&domain=pdf&date_stamp=2024-10-29

2 • Y. Chen et al.

while being monitored, and no evidence of the attack is left behind [52]. Prior work focused on protecting small

embedded micro-controllers and simple in-order processors dedicated to cryptographic applications [2, 3, 7, 11].

However, recently we have seen power analysis attacks targeting more complex, high-performance processors

based on out-of-order execution, found in mobile devices, desktops, and servers [18, 23, 47, 49, 65].

Power analysis attacks in particular exploit the synchronization of instruction execution and its correlation

with power consumption (collected as power traces) to uncover secret information from a running application [24].

Such attacks are efective due to the deterministic behavior of the processing units, and as demonstrated by prior

work [56], even modern general-purpose out-of-order processors show a high level of regularity, making them

relatively easy to attack [49]. The number of power traces required to reveal secret information deines the level

of security of the processor [8, 40, 76].

Many countermeasures have been proposed to combat power analysis attacks, such as just-in-time compilation,

random code injection, and instruction descheduling, that obfuscate the execution with added power noise by

randomizing the execution of instructions [2ś4, 7, 11, 22, 41, 89]. Unfortunately, such countermeasures introduce

large overheads in performance, power, and area, due to the unsupervised randomness and excess instructions

executed. The overheads in performance and power reach up to 270%, while the area can be twice the size of the

original processing unit. More importantly, they tend to be either application-speciic requiring compiler support

or target simple dedicated-to-encryption hardware that cannot be applied to high-performance general-purpose

processors. To protect current general-purpose out-of-order processors, several software and irmware solutions

have been proposed recently [49, 65]. However, they do not obfuscate the power side-channels of the processor

at the source, and an attacker with physical access to the system can still collect high-resolution power traces. In

addition, most of them assume a trusted Operating System (OS), but a successful attack on an Intel SGX enclave

with a malicious OS has been shown in [49].

In this paper, we introduce Paradise, a new hardware-only countermeasure that leverages the scheduling

information of dynamic instructions in an out-of-order processor to break the correlation to physical parameters

with minimal overhead. The key insight of Paradise is that to eiciently ofer always-on protection in a general-

purpose processor we must randomize the ordering of instructions in such a way that minimizes the efect on the

critical path of the execution [27]. We propose a novel instruction scheduler that uses the time diference between

the production of the two operands of an instruction (slack) to randomize the execution of non-critical instructions

in a targeted way. Doing so desynchronizes the execution, increases noise in the power measurements, and

obfuscates the power side-channel. The result is a low-overhead, general-purpose technique that uses always-on

protection by obfuscating instruction execution to break the power consumption correlation that is normally

observed by the adversary.

To better understand the lower bound of the security guarantees of the design, we introduce a comprehensive

and reproducible framework for rapid security evaluation of early design choices. With our security evaluation

setup, we demonstrate the dangers of using simplistic evaluation methods deployed in prior work that can give a

false sense of security.

The main contributions of this work are as followed:

• A general-purpose out-of-order core design with always-on protection, called Paradise, that provides a

signiicant security improvement against power analysis attacks demonstrated on AES-128 (556×when com-

bined with Boolean Masking over a baseline only protected by masking, and 62, 500× over an unprotected

out-of-order baseline for an advanced strong adversary);

• A dynamic instruction scheduling technique that combines instruction slack with randomness to provide

low performance overhead (less than 3.2% on average as opposed to up to 270% performance overhead of

other state-of-the-art solutions [2]), with negligible power and area overheads (1.2% and 0.8% respectively);

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 3

Device under Attack Adversary

Collecting Power Traces Computing Power Model
Comparing with Statistical

Distinguisher

Key Recovery

Fig. 1. Diferential Power Analysis (DPA) flow. Power traces are collected and the adversary tries to compute the power

model. A statistical distinguisher (correlation, diference of means, etc.) is used to recover the secret key.

• A comprehensive security evaluation framework with a strong adversary with full knowledge of the

countermeasure that complies with the highest security standards.

2 Background and Motivation

2.1 Power Analysis Atacks

Power analysis attacks collect a set of power traces from a computing device and use statistical techniques to

correlate this information with the attacked application data and source code. In this section, we use the AES-128

algorithm as an example of how to recover secret keys from power traces.

In the irst round of the AES-128, a 16-byte plaintext is loaded byte-by-byte and equation �� = ���� [�� ⊕ ��]
is applied to form an intermediate state of the ciphertext (the 16-byte encrypted output of the algorithm). In this

equation, �� is the ��ℎ byte of the intermediate value, �� is the ��ℎ byte of the plaintext, and �� is the ��ℎ byte of

the secret key. The Sbox is a look-up table that takes a byte as input and substitutes it with another byte. The

Sbox and the plaintext (��) are both known to the adversary.

A typical power analysis attack, shown in Figure 1, targets a small part of the key or subkey2. First, the

adversary needs to select a power model relecting the power consumption behavior of the device. This can

be done using a priori assumptions of leakage behavior like the Hamming weight/distance model [14] (better

known as an unproiled attack), or by trying to characterize the actual model (i.e. proiled attack), using, for

example, Gaussian template [17] or supervised machine learning [63]. Using this model, the adversary only needs

to try all 28 possible values for the secret key byte and examine if the computed intermediate value has a high

statistical dependency on the collected power measurements. The attack outputs a probability for each of the

28 guesses to be correct and is successful if the most likely one corresponds to the actual key. This efectively

reduces the brute force attack complexity from 2128 to 212 (16 ����� × 28) when using a divide and conquer

methodology3. Many diferent statistical distinguishers, or attack tools, have been introduced in the literature,

with Kocher’s Diferential Power Analysis (DPA [46]), Correlation Power Analysis (CPA [14]), Mutual Information

Analysis (MIA [10]) and the maximum likelihood template [17] being some examples. In the rest of the paper,

and independently of which statistical distinguisher is used, we will refer to DPA as any attack taking advantage

of varying plaintext. This includes, for example, the aforementioned DPA and CPA.

2.2 Motivation and Overview

Power analysis attacks exploit the synchronization of instruction execution and its correlation with power

consumption to uncover secret information from a running application. Such attacks are efective due to the

deterministic behavior of processing units. Thus, the security of a system is strongly dependent on how regular

its power trace patterns are. More regular patterns make an attack easier to recover secret keys with a small and

reasonable number of observations. As demonstrated by previous works [55, 56], even modern general-purpose

2Typically, for AES, the subkey is one byte, each attacked independently.
3By adjusting the variable �� and device-speciic power leakage model, the proposed framework can be adapted to other cryptographic

algorithms.

ACM Trans. Arch. Code Optim.

4 • Y. Chen et al.

out-of-order processors show a high level of regularity, making them easy to attack using a relatively small

number of traces [49].

Many countermeasures have been proposed to combat power analysis attacks [3, 4, 22, 37, 68, 89]. We categorize

these countermeasures into two generic techniques: (1) hiding and (2) masking. Hiding limits or hides the

information available to an adversary. In other words, hiding lowers the available signal-to-noise ratio (SNR) to an

adversary. SNR suppression can be achieved by balancing or suppression techniques where relationships between

power consumed are weakened for executed data or instructions or by randomizing the execution sequence.

Masking splits any sensitive intermediate variable into several statistically independent shares, similar to

the principles of Shamir’s secret sharing [70]. An adversary can learn nothing about the sensitive intermediate

variable unless all the shares are available. While masking can provide strong guarantees from a cryptographic

point of view, it is efective only in the presence of noise [33]. Thus, masking and hiding are complementary

countermeasures, where hiding provides the ideal low SNR environment for masking to be efective.

The goal of this work is to eiciently enhance secret hiding on the execution unit and the register ile of a

general-purpose out-of-order processor, which have the greatest impact on the execution’s power signature,

making them an easier target to attack [2]. Our target is to leverage the dynamic scheduling of the out-of-order

processors to randomly delay the issue and execution of non-critical instructions, hence, providing diferent

instruction schedules in every run. This results in a non-deterministic behavior of the core that ultimately hides

secret information.

3 Threat Model and Assumptions

Adversaries’ assumptions. In this work, we assume several adversaries with diferent levels of capabilities

(Basic with no knowledge of the countermeasure, Educated with limited knowledge, and Advanced with full

knowledge of the Paradise system). For the strongest adversary, we also assume they have access to the device

under attack for which they can control everything including the randomness algorithm. This attacker can learn

the precise leakage model, leading to a conident lower-bound on security to defeat Paradise. The attacker can

collect power traces either through physical access to the device, for example using probes, or through remote

access and software-based interfaces as demonstrated in [49, 54] for AMD and Intel x86 CPUs. Although we only

consider power attacks, Paradise can harden other physical side-channels with similar attack methodologies,

like electromagnetic (EM).

Applications and attack surface. Paradise aims to resist power side-channel attacks (SCA) that extract

private cryptographic keys, which are the most dangerous and critical threats for physical side-channels and

also tougher to mitigate. We assume a safe implementation of the cryptographic algorithm is being used (e.g., a

constant-time implementation), and that there are no secret-dependent timing and access patterns in a single

execution4. We evaluate Paradise with an AES-128 algorithm as it is commonly used in SCA literature. Public

key cryptography algorithms, such as RSA, are also vulnerable to power SCA and previous work [86] has shown

that jitter or misalignment (as used by Paradise) improves SCA resistance.

4 ParadiseMicroarchitecture

Paradise is an out-of-order processor that implements a novel, eicient instruction scheduler that detects and

uses the time between an instructions operand availability (slack) to randomly delay non-critical instructions

at runtime. These instructions are delayed before being issued to randomize their execution and their access

to the register ile or memory. This desynchronizes the execution with little efect on the critical path, hence

maintaining high performance.

4Unsafe implementations with secret-dependent timing and access patterns are vulnerable to a wide range of attacks, like timing and cache

side-channels, that the attacker would deploy them before considering power analysis attacks.

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 5

Issue Slot

Slack Unit

Frontend Dispatch

RF

LSU

FP-IQ

MEM-IQ

INT-IQ

NCT

DT

CT

ROB

EXE

WB

Commit

Existing structures

Additional structures

Issue Unit

Micro-op

RS2 RS1 RDst

==
RDst

Ready-to-issueSlack

Delay Counter

Pseudo-Random

Number Generator

Slack

Delay

threshold

Delay

T1

+1

T2

+1

RDst

Fig. 2. The microarchitecture of Paradise.

INST 2

t1

Slack(INST 2) = abs(t0-t1)

Second Round

time

Delaying issue time by

Rand(0,Slack(INST 2))

cyclesINST 0
t0

INST 1

INST 2

INST 0

INST 1

t0

Rand(0,Slack(INST 2))

First Round

INST 0

is ready

INST 1

is ready

INST 0

and INST 1

issued

Fig. 3. The slack of INST 2 is the absolute diference between the times that INST 0 and INST 1 produce their result (let).

This slack is then used to delay the non-critical producer (INST 0), in its next appearance, to change its issue time without

afecting the issue time of INST 2 (right).

Paradise is built on top of SonicBOOM [91]5, a RISC-V out-of-order core with a 7-stage pipeline; it implements

a new structure called the Slack Unit and updates the Issue Slots to dynamically record the slack of instructions

and communicate the delay to be applied to selected, typically non-critical, instructions (Figure 2).

4.1 Definitions of Instruction Criticality and Slack

Similarly to previous work [27], we deine criticality by the time the input operands of an instruction are produced.

A non-critical instruction is one that if delayed, will not afect the execution start time of its consumers, as long as

the delay does not exceed the extra time it takes for the second operand to arrive. We deine this time diference

between the production of an instruction’s operands as slack. In the example of Figure 3, the slack of instruction

INST 2 will be the absolute diference of the times that its producers (INST 0 and INST 1) will return their result,

represented by Equation 1.

����� (���� 2) = ��� (�0 − �1) (1)

5We have open-sourced Paradise implementation in https://github.com/PARADISE-Secure-Core/PARADISE-Core.

ACM Trans. Arch. Code Optim.

https://github.com/PARADISE-Secure-Core/PARADISE-Core

6 • Y. Chen et al.

rsa kyber ecc frodo lac mceliece newhope ntru-prime

aes grain ntru sha3 sm4 speck simon

S
la

c
k

 V
a

lu
e

0
1
2
3
4
5
6
7
8

> 8

ledacrypt

xoodayak

threebears

sm3saber

Fig. 4. Slack distribution of dynamic instructions for security-related applications. On average 58% of dynamic instructions

have slack (stable slack for 83% of them).

Stable (1 bit)Slack (5 bits)PC (12 bits)

0100x1210

150x1220

………

PC (12 bits)

0x1400

0x1420

…

Non-critical PC offset (8 bits)PC (12 bits)

1920x1310

80x1330

……

Non-Critical Table (NCT)Critical Table (CT)Destination Table (DT)

Fig. 5. The Destination Table (DT) and the Critical Table (CT) store currently dispatched and critical instructions, respectively.

The Non-Critical Table (NCT) stores non-critical instructions and the smallest slack observed;

In the example of Figure 3, INST 0 and INST 1 produce their data for INST 2 at times �0 and �1 respectively. If we

assume that �1 > �0, then INST 0 is considered to be non-critical for the execution of INST 2 and this information

will be saved for the next time we execute this instruction.

We investigated a set of security-related applications (NIST post-quantum candidates and lightweight cryptog-

raphy algorithms [32, 57, 74]) to determine the amount of available slack. Figure 4 shows that there is enough

slack between dynamic instructions to eiciently enable the proposed countermeasure. At least 50% of every

application’s dynamic instructions have a non-zero slack (on average 58% across all security applications); delay

is injected for 47% of them with stable slack for 83% of the delayed instructions.

In the rare cases that not enough slack exists, Paradise injects a predeined maximum slack to provide

always-on protection and guarantee security.

4.2 Slack Unit

The Slack Unit is introduced in the design to store runtime information in order to learn the slack and inject

appropriate delays when needed to randomize instruction issue. It is built using three set-associative memory

structures6 (see Figure 5):

(1) Destination Table (DT) holds issued instructions and their non-critical producer. The DT is queried by

the issued instructions to check if their non-critical producers are the same in subsequent appearances.

(2) Critical Table (CT) holds instructions that were marked as critical, to handle criticality conlicts when an

instruction is a critical producer for one instruction but a non-critical producer for another.

(3) Non-Critical Table (NCT): Holds non-critical instructions and their corresponding slack. For performance

reasons, we also mark whether the instruction has consistently been a non-critical instruction (stable). If so, we

use the stored slack as an upper bound for selecting a random delay for the corresponding instruction.

Testing multiple applications indicates that an 8-bit ofset is suicient to represent the PCs of non-critical

instructions in the DT. To avoid introducing new security vulnerabilities when context-switching processes

access the Slack Unit with the same PCs (false hits), we lush it on context switching.

6Using a Bit Pseudo Least Recently Used replacement policy [50].

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 7

4.3 Detection of Criticality and Slack

When a new instruction is issued, an entry is allocated for it in the Destination Table (DT). When it completes

its execution, the Slack Unit detects the criticality of its producers and calculates the slack that will be used to

generate the random delay for the corresponding non-critical instruction in its next appearance. The critical

instruction is stored immediately in the Critical Table (CT). At the same time, the Non-Critical Table (NCT) is

checked and if the current critical instruction matches with a previous NCT entry, the entry is dropped as the

critical status supersedes. Before storing the non-critical instruction we must irst query the CT for possible

criticality conlicts. A criticality conlict occurs when an instruction is a producer for more than one instruction

and its criticality status is diferent for each one of them. In this case, the producing instruction is not stored in

the NCT. In the absence of a conlict with the CT, the producer will be stored in the NCT table coupled with the

calculated slack and marked as not stable. If the instruction was already stored in the NCT, we only keep the

smallest slack value to minimize the efect on the critical path. When an issued instruction hits the DT (indicating

that it appeared before), we verify that the criticality status of its producers is the same and update the non-critical

status in the NCT to stable. If their criticality status changes, we make the appropriate changes in all Slack

Unit structures. It usually requires a few iterations to learn the slack (see Section 4.6 for an illustrative example

and Figures 13 and 14 for the average number of required iterations to learn the slack in SPEC CPU2017 and

security-critical applications). For example, deepsjeng application in SPEC CPU2017 requires only one iteration

to learn the slack for 51% of the instructions, while only 4% of the instructions require more than 20 iterations.

4.4 Measuring Slack and Randomizing Execution

To learn the slack of executing instructions, we need to track the instruction dependencies and their execution

times. To track dependencies, we compare the source registers of the instructions (RS1 and RS2 in Figure 2) in all

issue slots with the destination register of issued instructions. To measure the production times of their source

registers, we update each issue slot with two timer ields (T1 and T2) that count the number of cycles each source

register took to resolve.

To randomize the execution of non-critical instructions, we inject a random delay7 to their issue time within

the range of the appropriate slack. A Delay Counter starts a countdown with this delay only after all instruction

dependencies are resolved. When the countdown is complete, it marks the instruction as Ready-to-Issue. When

issued for execution, its producers and their new slack are stored in the Slack Unit.

4.5 Delay Injection

To ind whether a newly dispatched instruction is to be delayed, the Slack Unit is queried (speciically the NCT)

with the instruction PC and in case of a hit, the appropriate delay is returned and injected to its issue slot. As

soon as its operands are produced, the instruction will be marked to wait for another delay number of cycles. If

the corresponding slack in NCT is marked as stable, it will be used as an upper bound to select a random value

between 0 and the stable slack value. If the slack is not stable, we label it as being in the unstable phase, and we

don’t randomize the delay. Instead, we will use the slack value as is for the delay. Note that, the Slack Unit is

constantly learning to determine a stable slack.

Paradise is an always-on protection design and tries to obfuscate all instructions regardless of the slack

available. To provide this security guarantee the Slack Unit monitors the accumulated slack in an instruction

window (a set of live instructions) to determine whether additional slack, above that available in the application

itself, is needed. If the available slack is below 100 cycles for all instructions in the Slack Unit, we temporarily

enable a security model called random-iso-security that randomly injects up to 8 cycles delay with 20% probability

7We use the Galois Linear Feedback Shift Register (GaloisLFSR) function [53]. Alternative random number generators exist [85], but we

choose the best tool at our disposal to implement in RISC-V SonicBOOM.

ACM Trans. Arch. Code Optim.

8 • Y. Chen et al.

INST 0

INST 1

INST 2

10

12

-2

Adding

8 cycles

Slack

UNSTABLE 8

time

INST 0

INST 1

INST 2

10

10

0

Adding

6 cycles

INST 1

INST 2

10

6
Adding

Rand(0,6)

cycles

INST 0

INST 1

INST 2

10

2

8
Update

needed

First Round Second Round Third Round Fourth Round

Slack

UNSTABLE 8-2

Slack

STABLE 6

Slack

STABLE 6

Fig. 6. Slack detection and delay injection example, showing the stability of slack in multiple rounds. The instability of INST

1 in the first appearances is common due to backward dependencies to previous instructions that might have been delayed

as well.

per instruction. This model achieves the same security-level as Paradise on AES and is described and evaluated

in detail in Sections 6 and 7. The performance penalty, in this case, is negligible as the time that the random-iso-

security model is enabled is small (∼ 0.1% of the execution in our results which corresponds to the slack learning

phase).

These modiications seamlessly run in parallel with the rest of the processor operations and do not afect the

pipeline stages.

4.6 Example

Figure 6 shows an example of how we detect instruction criticality and slack and how we inject a delay on

non-critical instructions. When INST 2 is issued in the irst round, we detect the completion time for each of

its input operands and calculate the slack (8 cycles). INST 1 is the critical instruction that we can’t delay as it

inished last and INST 0 is marked as non-critical with a slack of 8 cycles. Because INST 0 is still unstable, in its

next appearance (second round) we inject the computed slack as is. Although we expected the new slack of INST

2 to be 0 as INST 0 still needs 10 cycles to complete, we ind that INST 0 took 12 cycles to inish in this round

(instead of the 8 cycles that we injected as a delay). This is relatively common for all instructions that appear for

the irst time due to the backward dependencies of INST 0 to previous instructions that might have also been

delayed. We call this the unstable phase where the instruction is marked as unstable and the Slack Unit records

the slack for INST 0 as the diference between the old and the new slack. When the unstable phase is over in

the third round, the instruction will be marked as stable and the injected delay thereafter (fourth round) will be

randomized with the updated slack as the upper bound.

5 Security Evaluation Methodology

In this section, we propose a comprehensive security evaluation framework to better identify the lower bound of

security for our newly proposed hardware design. We irst discuss the dangers of the commonly used, simplistic

pass-fail security evaluation methods, and then describe our proposed security framework and metrics.

5.1 Limitations of Simple Pass-Fail Tests

T-test: The amount of leakage is deined by the statistical moment on which the meaningful information depends.

For example, irst-order (respectively second-order) leakages extract information in the mean (respectively

variance/co-variance). A irst-order secure masking countermeasure ensures that no information lies in the mean

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 9

of the side-channel traces, forcing an adversary to extract information in (at least) the variance and covariance.

The Test Vector Leakage Assessment (TVLA [30]) methodology was introduced to detect the presence of this

irst-order leakage for masked implementations and can be extended for higher orders [19]. That is, a T-test failure

shows the existence of such leakage, while success can only state that no such leakage was found for a given

number of measurements. However, it has since often been used as a pass-fail method to evaluate the resilience

of an implementation, where the hidden assumption is that a T-test failure with a total of � measurements

roughly translates to security up to � measurements. However, such an assumption has been shown to be

incorrect [8, 76]. That is, the standard T-test should only be used to show the presence of irst-order leakage

when the null hypothesis is rejected. However, no conclusion should be made when it is not the case. As a direct

consequence, using the T-test for hiding countermeasures, where leakages would exist at irst-order, should be

avoided.

Fail/success unproiled CPA: The strengths and weaknesses of an unproiled CPA lie in its assumptions.

On one hand, it is designed to process one-time samples at a time (also known as univariate leakage [76]).

While one can combine time samples together before performing CPA (i.e. multivariate attack [76]), doing so

is sub-optimal. On the other hand, CPA assumes some leakage model and is often a good security estimate

for unprotected implementations where the side-channel traces are well aligned and the power model is well

known (e.g. Hamming weight/distance). However, this no longer holds when the type of leakage diverges

from these assumptions. An implementation that changes the underlying leakage model, or that introduces

jitter or misalignment from one measurement to another, will drastically drift apart from these hypotheses

and subsequently makes CPA sub-optimal. In other words, a failed CPA under sub-optimal assumptions does not

provide a sound security evaluation. A direct result of the use of this method will be a false sense of security

(a higher-than-expected security result), while a more appropriate attack (which exploits a well-characterized

leakage model or applies measurement alignment/processing techniques) might achieve key recovery with

signiicantly fewer observations. In Section 7.1, we demonstrate the dangers of using a basic CPA attack in

evaluating Paradise, and in Section 5.2, we propose an evaluation framework that considers more powerful

adversaries that are capable of applying the right leakage model and processing techniques to exploit the available

leakage in an optimal manner. In addition, we discuss the same limitations in the evaluation of prior work in

Section 9.2.

5.2 Proposed Evaluation Framework

The limitations of the previously discussed methods can be summarized as using weak or incorrect adversarial

assumptions. The two main ingredients for a power attack are the leakage model and the statistical distinguisher

used. The further the model is from the actual leakages from the device, the worse the attack will be. This typically

happens when using a Hamming model for power balancing, for example, which inherently changes the leakage

model. On the other hand, as methods such as CPA are not meant to combine leakages together, they are less

optimal for multivariate attacks compared to template attacks [17]. As a result, evaluating the security of a device

with the wrong model and method can lead to a false sense of security. This can be mitigated by considering

stronger adversarial capabilities, eventually up to a potentially non-existent (extremely strong) adversary in order

to approach a lower-bound (conservative) estimate of security guarantees.

We will illustrate this by providing diferent levels of security analysis for three types of adversaries, which

we call (1) basic, (2) educated, and (3) advanced. First, in order to compare our work to existing literature, the

basic evaluation considers an adversary that applies standard CPA with a Hamming weight model on the Sbox

output [14]. Second, as part of the security introduced by our countermeasure comes from desynchronization, an

educated evaluation will be performed with a CPA analysis with the same model, additionally pre-processing

traces to defeat countermeasures with alignment techniques such as integrating the leakage over diferent time

ACM Trans. Arch. Code Optim.

10 • Y. Chen et al.

samples. This simple method aims to show how basic knowledge of the implementation and a simple attack

change can greatly alter the evaluation outcome (efectively demonstrating a lower security guarantee). Finally,

the advanced evaluation aims to approach the lower security bound (a conservative security estimate) by

assuming an adversary adopting proiled attacks. We will irst take advantage of a proiling (or training) set in

order to mount a multivariate template attack [17] augmented with proiled Principal Component Analysis (PCA)

for dimensionality reduction [6]. PCA applies a linear transformation that projects high-dimensional data into

a low-dimensional space while preserving the data variance, by computing the eigenvectors of the covariance

matrix. A proiling phase with PCA allows an adversary to learn the precise leakage model and better characterize

the underlying countermeasure, leading to a conident lower bound on security.

5.3 Security Metrics

As the divide-and-conquer approach allows one to attack each byte of the key independently, we target an attack

with only one key byte without loss of generality. For all three attack methodologies, the resulting vector of 256

probabilities/scores for each key guess are denoted by p. In our evaluation, we will compute the security using

the following metrics:

Key rank (byte): Given the probability vector p resulting from an attack, the rank of the key is given by the

number of key candidates with a higher probability than the correct key.

Guessing entropy [77]: For a given key byte � , the guessing entropy (GE) is the average key byte rank within

its vector of probability p. We deine by rank(p, �) the function that returns the rank of the subkey � within the

vector p. From a set of �� independent attack result vectors p� , Equation 2 allows one to compute the guessing

entropy.

GE =

∑��−1
�=0 rank(p� , �)

��
· (2)

The use of guessing entropy provides more information than the commonly used measurement to disclosure

(MtD) metric [51]. First, it provides averaged information over several independent attacks. This minimizes the

over- and under-estimation of the actual security, as a single experiment could be an outlying result. Second,

it shows the global key recovery progression instead of only reporting the overall number of traces. As these

attacks belong to the class of divide-and-conquer methodologies, one can trade of side-channel complexity for a

computational one and recover the key through enumeration before the rank reaches one [66]. Looking only at

the number of measurements required to recover the key can be misleading, as the implementation might be

broken with fewer traces using brute force or key enumeration.

6 Experimental Setup

We implement Paradise on top of SonicBOOM [91], an open-source RISC-V out-of-order processor8. We used

the largest possible core coniguration (AWS FPGA-limited) as shown in Table 1.

Apart from the out-of-order baseline and Paradise, we also implement three generic processors to validate

the importance of using targeted injected delays (Table 2). For each of these processors, random delays (up to 8

cycles) are injected to each instruction with a given probability to either match the performance of Paradise

(random-iso-perf), or the level of security (random-iso-security).

Benchmarks. To evaluate the performance impacts, we run the microbenchmarks provided by Chipyard [5].

We then use FireSim [43] to run the 10 supported SPEC CPU2017 benchmarks. We demonstrate the security of

designs in Table 2 by targeting AES-128 [1].

Area and Power. We use the Synopsys Design Compiler (DC) [78] to synthesize Paradise and SonicBOOM

using a commercial 22nm process. Using VCS [80], we conduct gate-level simulations on synthesized processors

8SonicBOOM is the most recent and performant version of BOOM microarchitecture at the time of this submission [81].

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 11

Table 1. System Configuration

RF/Fetch Bufer/ROB 2x128/24/96 entries L2 Cache 4 MB, 8-way set assoc.

Issue Queue 3×16 entries Bus Protocol AXI

Execution Units 5 (1 MEM, 3 ALUs, 1 FPU) *(Paradise) DT 208 B, 4-way set assoc.

Branch Predictor Next-line, TAGE *(Paradise) CT 144 B, 4-way set assoc.

Cache line size 64 B *(Paradise) NCT 192 B, 4-way set assoc.

L1-I and L1-D Caches 32 KB, 8-way set assoc.

Table 2. Processor Implementation Details

Processor Name Platform Description

ooo-baseline SonicBOOM Unprotected baseline out-of-order processor

io-baseline Rocket chip Unprotected in-order processor

Paradise (proposed)
SonicBOOM +

Slack Unit
Secure instruction scheduling processor

random-iso-perf
SonicBOOM +

random delay

Delay injection probability is 5%

Aim to match the performance of Paradise

random-iso-security
SonicBOOM +

random delay

Delay injection probability is 20%

Aim to match the advanced security evaluation of Paradise

random-aggressive
SonicBOOM +

random delay

Inject random delay for all instructions

Naive and aggressive implementation

for realistic activity. PrimePower [79] analyzes gate-level waveform and code to determine power consumption of

Paradise and its overhead compared to the ooo-baseline. Note, that we do not use PrimePower to collect power

traces for security analysis. The rest of this section discusses our power simulation framework for power trace

acquisition and provides a detailed discussion on the shortcomings of existing alternative methods.

Power Traces. To perform security evaluations, each implementation consists of two sets of one million

traces each. The irst set (attack set), is composed of a ixed key and randomly varying plaintexts. The second set

(proiling set), is composed of randomly varying keys and plaintexts that are known by the adversary to perform

advanced proiling.

Power Trace Acquisition. For our proposed comprehensive security evaluation, we require detailed and

ine-grained power traces. We deploy a power simulation framework to estimate the power consumption that is

consistently correlated with physically measured power. We collect information at the instruction level from the

behavioral simulation of the CPU, to perform rapid and correct power simulation (similar to [71, 72]). We collect

millions of power traces and then use a Hamming weight leakage model to estimate the power. State-of-the-art

research shows that this model is robustly correlated with the physical power consumption [2, 49, 58, 59, 67].

Equation 3 shows the power estimation of our simulator at any given time � .

power(�) =

{

0 � inst : inst.WB = �
∑

inst HW(inst) ∀ inst : inst.WB = �
(3)

The write-back time of instruction inst is denoted by inst.WB. Also, HW(inst) is the Hamming weight of the data

that instruction inst writes to the system. Note that these are best-case settings providing maximum available

leakage to an attacker. In a physical chip, the leakage would likely have a signal-to-noise ratio that is orders of

magnitude worse, scaling up the security margins accordingly.

ACM Trans. Arch. Code Optim.

12 • Y. Chen et al.

Alternatives. There are several alternative techniques for collecting power traces for a power SCA evaluation:

(1) Using a real system and connecting an oscilloscope to the circuit [87]. However, this requires several rounds

of fabrication of the designed processor followed by evaluating its security which is costly and time-consuming,

and more importantly, not practical for rapid evaluation of multiple early design choices. (2) PrimePower can

simulate the cycle-accurate power consumption at the gate level. However, the simulation speed of PrimePower

is extremely slow (20 traces per day for SonicBOOM) and it would take years to produce the millions of traces

required for a comprehensive security evaluation. Using multiple instances of PrimePower is possible but the

cost of multiple licenses is prohibitive [36, 61]. (3) Mapping and executing the processor on an FPGA allows the

collection of power traces from the FPGA power monitor port using an oscilloscope. However, we discovered

several limitations in our eforts when using a state-of-the-art FPGA (the Sakura-X kintex-7 FPGA board [35]):

(1) A realistic design of SonicBOOM does not it on the FPGA: the largest coniguration that can it has a

decode/issue/commit width of only 1 instruction, which is not a realistic out-of-order processor. (2) A state-of-the-

art Keysight oscilloscope [44] does not allow a full run of AES-128 with a million random plaintexts, as required

by the proposed security evaluation framework. It can only store 2 million sample points per ile when operating

at 20MHz; (3) Using FPGA traces we can only run a basic CPA attack. An advanced security evaluation like the

one we propose, however, requires ine-grained information about the AES-128 code running on the core (e.g.,

the exact timing of the SBox operations). Finally, (4) synthesizing an out-of-order core for the FPGA will only

match the original hardware on a logical level but not on the netlist level. The resulting lookup tables used in the

FPGA lose certain characteristics of the out-of-order core and separation of diferent components, ultimately

losing the actual leakages of the core; the state-of-the-art work could only manually map the register ile of an

in-order core with two-stage pipeline [29], which is impractical for SonicBOOM. Currently, there is no veriied

tool that translates out-of-order core designs to FPGA with validated and correlated leakage assessment.

We choose to use a veriied simulation framework that enables researchers to perform a comprehensive, rapid,

and reproducible evaluation of multiple and early designs with realistic conigurations.

7 Experimental Results

7.1 Security Evaluation

For the security evaluation, we consider the three types of adversaries that we introduced in Section 5.2 to

extract the secret key of AES-128. For each method, we compare the security beneits of each core with their

corresponding ooo-baseline with respect to the same attack. Our goal with each enhanced evaluation technique is

to demonstrate how more knowledge about the type of countermeasures in place can easily beat the current

security techniques, ultimately showing that basic evaluation methods give a false sense of security.

Basic evaluation.We collected 10 million attack traces and divided them into 20 subsets, performed a standard

CPA on each of them, and averaged them to compute the guessing entropy (Figure 7(a)). The x-axis corresponds

to the number of traces and the y-axis to the guessing entropy. A guessing entropy of 0 indicates that the correct

key is the highest ranked (on average) and thus the attack is successful.

For the io-baseline and the ooo-baseline we recover the key with 500 and 1,800 traces respectively. Indeed, the

out-of-order core provides some randomness in the computation timings but these results show only a small

security beneit. We use the ooo-baseline hereafter, as the unprotected baseline for our security evaluation. We

observe that the Paradise countermeasure shows a security of 261× over the ooo-baseline, requiring 470,000

traces when using standard CPA. However, random-iso-perf design (i.e., adding random delays with the same

performance as Paradise) provides security of 12× (requiring only 22,000 traces for key recovery), which shows

that the Paradise method shows greater security beneits.

Finally, random-aggressive only requires 220,000 traces, which corresponds to a security beneit of 122×. While

the beneits are in the same order of magnitude as Paradise, the diference can be explained when looking at the

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 13

io-baseline ooo-baseline PARADISE random-iso-perf random-iso-security random-aggressive

0

20

40

60

80

100

120

140

160

180

50 500 5,000 50,000 500,000

G
u

e
ss

in
g

 E
n

tr
o

p
y

Number of Traces

(a) Basic Evaluation

0

20

40

60

80

100

120

140

160

180

50 500 5,000 50,000 500,000

Number of Traces

(b) Educated Evaluation

0

20

40

60

80

100

120

140

160

180

50 500 5,000 50,000 500,000

Number of Traces

(c) Advanced Evaluation(c) Advanced Evaluation

Fig. 7. Results of (a) the basic security evaluation, (b) the educated security evaluation, (c) the advanced security evaluation.

The x-axis corresponds to the number of traces (in log10 scale), and the y-axis corresponds to guessing entropy.

0

1

2

3

4

5

6

0 200 400 600 800 1000

C
o

rr
e

la
ti

o
n

Time Sample

×10
−!

-4

-2

0

2

4

6

8

0 200 400 600 800 1000

Time Sample

×10
−"

Fig. 8. Leaking regions using profiled CPA for ooo-baseline (let) and random-aggressive (right). The x-axis corresponds to the

time samples, and the y-axis corresponds to the correlation. Note the y-axis scale diferences.

two security beneits introduced by our countermeasure. The security of Paradisemainly comes from (1) targeted

desynchronization and (2) more randomness in the register’s content. The random-aggressive implementation

focuses on increasing the desynchronization, but due to its policy to add random delays to all instructions, we

observe that the relative instruction order appears to remain more intact, which results in fewer diferences in

the register ile content. In addition, because random-aggressive has no information on the slack, it must use a

maximum delay upper bound (8 cycles in this case), while Paradise is only limited to the slack observed (up to

25 cycles for AES).

Educated evaluation. As a second evaluation, we illustrate how some basic knowledge of the type of

countermeasure and a simple optimization of the attack itself can drastically change the outcome. A signiicant

part of the security introduced by our countermeasure comes from desynchronization, thus standard CPA being

a univariate attack is inherently suboptimal. Instead, we now assume an adversary with some insight that simply

combines sets of � consecutive time samples on the trace together (time integration) prior to performing the CPA

to reduce the efect of desynchronization. For each implementation, we tested values of � = 20, 50, 100, 150, 200,

for which the best corresponding results are shown in Figure 7(b).

We do not report any results for io-baseline and ooo-baseline implementations, as basic evaluation was better

(in terms of number of traces required) for non-existent and limited desynchronization. For that reason, we

will use the numbers from the basic evaluation for these two implementations. However, we can see that the

educated evaluation drastically reduces the required number of traces for both Paradise and random-aggressive

implementations, which are now broken with 22,250 (12×) and 20,000 (11×) traces respectively. This simple

optimization demonstrates the danger of using sub-optimal attack strategies for security evaluations.

Advanced evaluation. Our third evaluation considers a powerful adversary being able to proile the leakages

using, for example, a copy or clone of the device under attack for which she has complete control. First, we use

proiled CPA [26] in order to identify leaking features in the trace. The results are shown in Figure 8, where

ACM Trans. Arch. Code Optim.

14 • Y. Chen et al.

0

20

40

60

80

100

120

140

160

180

50 500 5,000 50,000 500,000 5,000,000 50,000,000

G
u

e
ss

in
g

 E
n

tr
o

p
y

Number of Traces

ooo-baseline PARADISE ooo-baseline+masking PARADISE+masking

Fig. 9. The advanced security evaluation including mask-

ing. The x-axis corresponds to the number of traces (in

log10 scale) and the y-axis to the guessing entropy.

0

20

40

60

80

100

120

140

160

180

1 10 100 1,000 10,000 100,000

G
u

e
ss

in
g

 E
n

tr
o

p
y

Number of Traces

io-baseline ooo-baseline PARADISE

Fig. 10. CNN-based atack. The x-axis corresponds to the

number of traces (in log10 scale) and the y-axis to the guessing

entropy.

the left graph shows the results for the ooo-baseline and the right graph shows results for random-aggressive

implementations.

Leakages are clearly identiied with several peaks for the ooo-baseline implementation. We observe similar

behavior for the io-baseline and random-iso-perf . For these three implementations, we thus selected all-time

samples having a correlation above 0.005 as valid attack samples. However, the leaking samples for the random-

aggressive implementation are less clearly identiied, as shown by the Gaussian shape correlation trace covering

around 200-time samples. This was also observed for Paradise and random-iso-security implementations, due to

the desynchronization brought by the countermeasures. In that case, we selected all-time samples happening

before and after peak regions as valid.

Once the points of interest are selected, we perform a proiled Principal Component Analysis (PCA) [6] in

order to further reduce the dimensionality and to project the sample into a more informative space. The result of

the projection is then fed into a multivariate template attack [17]. For each implementation, we use diferent

numbers of principal components, and show the best results for each of them in Figure 7(c). We also show the

results for the random-iso-security implementation, having similar security to Paradise (tailored speciically in

the case of the advanced evaluation).

The advanced method produces better results in terms of attack power than the basic and educated ones. First,

the io-baseline and ooo-baseline implementations now only require 125 and 400 traces respectively. Paradise now

requires 13,500 traces, showing a security gain of 34× (compared to the ooo-baseline with the same adversary).

However, random-iso-perf can now be broken with 2,200 traces, hinting that our countermeasure is 5.5× more

secure than random delays when considering a strong adversary. Interestingly, as opposed to previous results, the

random-aggressive implementation now requires 15,000 traces, which is more than Paradise, with a beneit of 38×.
Indeed, as we now proile the leakage model, the efect of the vertical noise is reduced, which has more impact

on Paradise. Overall, this shows that using the wrong or a sub-optimal attack against a given countermeasure

can lead to a false sense of security. Indeed, from standard CPA to multivariate templates, the number of required

traces has been divided by 35 for Paradise, and by 15 for the random-aggressive core due to wrong model

assumptions. However, the number of traces needed for the unprotected ooo-baseline implementation was only

divided by 4.5, as the model was already itting more. Note, that we tested multiple and diferent numbers of

principal components for each implementation (i.e., diferent traces’ division), and we report the numbers that

achieve the best attack results.

Masking Evaluation. To highlight the beneits of combing Paradisewith masking, we simulated side-channel

leakage corresponding to a lookup table implementation of irst-order Boolean Masking [20]. The attacker is

provided with two leakages corresponding to the Sbox output sharing S (� ⊕ �) ⊕� and�, where� is a secret

mask, uniformly chosen at random and changing at each execution. To relect the type of implementation used,

the SNR of both leakages is chosen according to the SNR obtained during the advanced evaluation for both

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 15

0

0.2

0.4

0.6

0.8

1

1.2

g
e

o
m

e
a

n

d
h

ry
st

o
n

e

m
e

d
ia

n

m
m

m
t-

m
a

tm
u

l

m
t-

v
v
a

d
d

m
u

lt
ip

ly

q
so

rt

rs
o

rt

sp
m

v

to
w

e
rs

v
v

a
d

d

g
e

o
m

e
a

n

a
e

s

e
cc

fr
o

d
o

g
ra

in

k
y
b

e
r

la
c

le
d

a
cr

y
p

t

m
ce

li
e

ce

n
e

w
h

o
p

e

n
tr

u

n
tr

u
-p

ri
m

e

rs
a

sa
b

e
r

sh
a

3

si
m

o
n

sm
3

sm
4

sp
e

ck

th
re

e
b

e
a

rs

x
o

o
d

a
y
a

k

g
e

o
m

e
a

n

d
e

e
p

sj
e

n
g

_
s

e
x
ch

a
n

g
e

2
_

s

g
cc

_
s

le
e

la
_

s

m
cf

_
s

o
m

n
e

tp
p

_
s

p
e

rl
b

e
n

ch
_

s

x
2

6
4

_
s

x
a

la
n

cb
m

k
_

s

x
z_

s

g
e

o
m

e
a

n

All RISC-V Microbenchmarks Security-Critical Applications SPEC CPU2017

N
o

rm
m

a
li

ze
d

 I
P

C

ooo-baseline PARADISE random-aggressive random-iso-perf random-iso-security

Fig. 11. Performance normalized to the ooo-baseline. We run all SPEC CPU2017 benchmarks compatible with FireSim.

ooo-baseline (0.014) and Paradise (0.00057). Using these leakage values, we performed the advanced evaluation.

The corresponding results are shown in Figure 9. Indeed, 45,000 traces are now required for ooo-baseline+masking

(112× compared to ooo-baseline), while 25,000,000 are needed to break Paradise+masking (556× compared to

ooo-baseline+masking, and 62, 500× compared to ooo-baseline). This diference can be explained by the quadratic

beneit in terms of the number of traces needed when the noise increases from using 2-share masking [33].

Note, that the number of traces presented in this section is very small compared to non-simulated scenarios as

our simulated traces have zero noise. Prior work [49] shows that 16 million traces (taking 11.5 days) were needed

to reconstruct 12 of 16 bytes of the AES-128 secret key, from an Intel server, out-of-order processor. We believe

that the combination of Paradise and masking would eradicate the dangers of power analysis attacks in real

hardware with the extra noise present in the measurements.

CNN-based SCA.Recent work in proiled SCA attacks have seen rapid adoption of deep learning techniques [13,

63], in particular convolution neural networks (CNNs), as the transitional invariance property of CNNs is widely

exploited by side-channel attacks to overcome countermeasures like jitter [16]. As the transitional invariance

property of convolution neural networks (CNNs) is exploited by SCAs to overcome countermeasures [16], we

evaluated the performance of CNN-based attack [63] against the most representative implementations: io-baseline,

ooo-baseline, and Paradise. We used an approach similar to [90] on the AES_RD dataset with three convolution

layers, targeting random delay countermeasures (similar to Paradise). Three convolution layers are as follows

with respect to channel count (C), kernel size (K), padding on each side (D), average pool size (P), and pool stride

(S): (layer 1: C=4, K=1, P=2, S=2; layer 2: C=8, K=50, P=50, D=24, P=50, S=50; layer 3: C=16, K=3, D=1, P=7, S=7).

We use the Glorot weight initialization [31], the One Cycle Policy [73] with a learning rate of 0.0025 to 0.005, and

the Adam optimizer [45], adapted to our dataset. We train for 100 epochs with a 90:10 training/validation split

and report the guessing entropy in Figure 10. The ooo-baseline was broken in 588 traces with CNN as compared

to 400 with the advanced evaluation. However, for a protected dataset like Paradise, the CNN does not converge.

Finding the best CNN architecture for a particular dataset is an open problem in side-channel literature. Thus,

the results obtained with CNNs cannot be claimed to be a worst-case analysis as one could ind a better CNN

architecture. Moreover, template attacks, like our advanced evaluation, have been theoretically proven to be the

optimal attack from an information theory point of view [9].

7.2 Performance Evaluation

We evaluated several conigurations for the Slack Unit in Paradise by running an AES-128 encryption engine

to ind the best combination of performance, power, and area, and we found that a 4-way, 64-entry cache

implementation provides the best combination. Figure 12 conirms the best combination of power and area

eiciency to be a 4-way and 16-set Slack Unit. Power-performance and area-performance eiciency shown in

Figure 12 are calculated as
����ℎ������ �
����ℎ��������

and
����ℎ������ �
����ℎ�������

. We use the highest number for ����ℎ������ � because in

this scenario Paradise is going through a longer unstable phase and although it injects more unstable delays, it

ACM Trans. Arch. Code Optim.

16 • Y. Chen et al.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2W8S 2W16S 4W8S 2W32S 4W16S 8W8S 2W64S 4W32S 8W16S 2W128S

16 32 64 128 256

P
e

rfo
rm

a
n

ce
 D

e
g

ra
d

a
tio

n
 (%

)

P
o

w
e

r
a

n
d

 A
re

a
 E

ff
ic

ie
n

cy
Performance Degradation Area Efficiency Power Efficiency

#entries

Fig. 12. Performance degradation compared to ooo-baseline

core and area/power eficiency using diferent parameters.�

and � represent number of ���� and ���� respectively, the

#������� are equal to� × � , which denote the total number

of ������� of each table in the Slack Unit.

43%

19%

13%

9%

4%

12%

(b) omnetpp

51%

20%

14%

5%

6%
4%

(a) deepsjeng

2
1

(2,8]
(8,14]

(14,20]
> 20

N
u

m
b

e
r

o
f

le
a

rn
in

g
 i

te
ra

ti
o

n
s

Fig. 13. Comparison of number of iterations required for

Paradise to learn stable slack values in two diferent SPEC

CPU2017 applications with low impact on performance (i.e.,

deepsjeng with 1.9% overhead) and high impact on perfor-

mance (i.e., omnetpp with 7.0% overhead).

collects more runtime information to improve in later iterations. Therefore, more instructions will be reordered

and the desynchronization of the execution increases with the overall security improved.

Figure 11 shows the performance of Paradise (normalized IPC to the ooo-baseline) on three diferent sets

of benchmarks (RISC-V bare-metal microbenchmarks, security-critical applications and SPEC CPU2017). For

all the applications evaluated, the average performance overhead of Paradise is 3.2%. Performance overhead

of random-iso-perf, random-iso-security, and random-aggressive implementations are 3.0%, 12.0%, and 29.9%

overheads, respectively. An in-depth analysis showed that the overheads mostly come from the unstable phase

where we inject an unstable delay. As soon as the criticality of the instructions and the slack becomes stable,

the performance of the processor returns to its baseline levels. To demonstrate this point, Figure 13 depicts

the number of required iterations in two SPEC CPU2017 applications to learn stable slack: (a) deepsjeng that

experiences low impact on performance in Paradise (i.e., 1.9% performance overhead), and (b) omnetpp that

experiences high impact on performance (i.e., 7.0% performance overhead). As shown in Figure 13(a), only one

iteration is needed for 51% of the instructions in deepsjeng to learn the stable slack, while this percentage is

reduced to 43% in omnetpp (see Figure 13b). Moreover, 12% of the instructions in omnetpp require more than 20

iterations to learn stable stack, while only 4% of the instructions in deepsjeng require more than 20 iterations.

In addition, the results in Figure 14 show that the vast majority of the security-critical applications evaluated

in this work require less than 8 iterations to ind stable slack values. Note, that the Paradise methodology aims

to minimize performance overhead for critical paths of the programs that execute frequently; these hot regions of

the programs provide ample opportunities to learn their stable slack values. In other words, infrequent regions of

the programs do not contribute to the overall performance signiicantly and it is not critical to learn their stable

slack.

The random-iso-security injects on average 0.9 cycles delay per instruction with a total of 86.4 cycles for 96

instructions (ROB size). This suggests that at least 86.4 cycles of accumulated slack over an instruction window

is required to achieve an acceptable level of security. To guarantee this in Paradise when not enough slack is

available we increase the aggressiveness of the delay and enable the random-iso-security if the available slack in

the Slack Unit is below 100 cycles (threshold). Because all security applications tested have enough slack, we see

an average of just 0.1% of cycles (Figure 15) where the slack is below the threshold, i.e., random-iso-security is

enabled merely 0.1% of the time, on average; this overhead corresponds to the time needed for the slack learning

phase.

Small core eiciency. While we use the largest provided coniguration of SonicBOOM for the main results

(see Table 1 for the details), we have also experimented a smaller coniguration as shown in Table 3. Our results

show that the small core has a performance overhead of 4.3% for Paradise when compared to an unprotected

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 17

Table 3. Small Core Configuration

RF 2×54 entries Issue Queue 3×8 entries
Fetch Bufer/ROB 16/64 Execution Units 3 (1 MEM, 1 ALUs, 1 FPU)

49.01%

21.95%

15.26%

6.19%

5.14% 2.44%

2
1

(2,8]
(8,14]

(14,20]
> 20

N
u

m
b

e
r

o
f

le
a

rn
in

g
 i

te
ra

ti
o

n
s

Fig. 14. Average number of iterations re-

quired for security-critical applications to

learn stable slack.

0.0
0%

0.0
0%

0.0
8%

0.0
0% 0.0

1%

0.1
3% 0.1

3%

0.0
0%

0.0
3%

0.0
0%

0.0
0%

0.0
4%

0.1
2%

0.1
2%

0.0
5%

0.0
2%

0.0
1% 0.0

2%

0.0
1%

0.0
8%

0.00%

0.05%

0.10%

0.15%

0.20%

ae
s

fr
od
o

le
da
cr
yp
t

hp
s

th
re
eb
ea
rs

si
m
on

sp
ec
k

ec
c

ky
be
r

m
ce
lie
ce

nt
ru
-p
rim
e

rs
a
sm
3

xo
od
ay
ak

sm
4

gr
ai
n la

c

ne
w
ho
pe

sa
be
r

sh
a3

Av
er
ag
e

P
e

rc
e

n
ta

g
e

 o
f

cy
cl

e
s

w
it

h
 s

lc
a

k
s

b
e

lo
w

 t
h

e

th
re

a
sh

o
ld

0.8
2%

Fig. 15. Percentage of cycles that the random-iso-security is enabled.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

ooo-baseline

PARADISE

ooo-baseline

PARADISE

A
re
a
P
o
w
e
r !�b$%%�& FPU

IQ, CSR

RF !�,1a34��&

EXU, ROB

!�Ca4�� '&;�3��=

LSU PTW

SLACK UNIT

Fig. 16. Power and area overheads of Paradise.

baseline. In addition, Paradise has a power and area overhead of 2% and 1.03% with the small core coniguration,

respectively. These results show slightly higher overheads compared to the large core coniguration, but they are

still fairly close and acceptable.

7.3 Power and Area Overheads

Figure 16 shows the power and area of Paradise compared to the ooo-baseline. The Slack Unit and the GaloisLFSRs

(for randomizing the delay) introduce a negligible overhead of 1.2% for Paradise. In matters of area, the total

overhead of Paradise compared to the ooo-baseline is 0.8%.

8 Discussion

8.1 Paradise against Privacy Atacks

While Paradise aims to resist power analysis attacks (i.e., extracting cryptographic keys), another use case of

power side channels is leaking private information about the applications running on the processor (e.g., detecting

the running application [38, 48, 88]). Defending against such attacks requires obfuscating the original power

signature of the running application. To demonstrate that Paradise also resists against such attacks, we run four

security-related applications on both the unprotected ooo-baseline and Paradise. Figure 17 shows the averaged

power signals of 2,000 traces performing encryption using four diferent lightweight ciphers: Xoodyak [21],

Simon [12], SM3 and SM4 [25] (these applications are also a subset of security-critical applications presented in

Figure 4 and Figure 11) 9. Results show that the ooo-baseline core is highly deterministic and diferent phases

of the program are visible. On the other hand, Paradise shows a high degree of obfuscation to hide the power

signals of the running application. Additionally, Figure 18 depicts the box plots of the averaged power signals,

9Results of this section are inspired by Maya [65].

ACM Trans. Arch. Code Optim.

18 • Y. Chen et al.

0

20

40

60

80

0 90 180 270 360 450

A
v
e

ra
g

e
 P

o
w

e
r

Samples

ooo-baseline PARADISE

(a) xoodayak

0

10

20

30

40

0 25 50 75 100 125 150

Samples

ooo-baseline PARADISE

(b) simon

0

10

20

30

40

0 600 1200 1800

Samples

ooo-baseline PARADISE

(c) sm4

0

10

20

30

40

50

0 1100 2200 3300 4400

Samples

ooo-baseline PARADISE

(d) sm3

Fig. 17. Average power for 2,000 traces. The x-axis corresponds to the time samples, and the y-axis corresponds to the average

power (see Equation 3).

0

1

2

3

4

5

6

ooo-baseline PARADISE

ooo-baseline PARADISE

A
v

e
ra

g
e

 P
o

w
e

r

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

45

(a) xoodayak (b) simon (c) sm4 (d) sm3

Fig. 18. Summary statistics of the average 2,000 power signals in Figure 17.

indicating the distribution of the values. While the power values are very diverse in the ooo-baseline and diferent

applications have distinguishable distributions, Paradise can hide this diversity of values. The target of Paradise

is not privacy attacks, but our indings conirm that the Paradise methodology is capable of obfuscating power

values for diferent applications, and potentially, making the privacy defenses [65] easier since most power signals

and highly distinguishable patterns of the applications are hardened.

8.2 Paradise-selective: Compiler-Informed Protection

We also analyze a version of Paradise that enables protection for only secret-dependent regions, determined by

static program analysis. We call this Paradise-selective and we compare its security with Paradise in Figure 19.

Paradise-selective requires 262,000 and 18,500 and 12,000 traces to recover the key in our basic, educated, and

advanced security evaluations respectively. This translates to 145× improvement over ooo-baseline in basic

evaluation, 10× in educated evaluation, and 30× in advanced evaluation. Results show that Paradise with

always-on protection provides better security guarantees because it is able to randomize a larger number of

instructions and blend the execution of secret-dependent regions with the rest of the code to produce more

noise overall. Another beneit of Paradise over Paradise-selective is that it does not require static analysis and

re-compilation of all applications that need to be protected. Neither does it need the extra cost to communicate

the compiler-driven information to the hardware.

9 Related Work

Table 4 summarizes the state-of-the-art works in terms of our evaluation metrics and other design features.

9.1 Power Analysis Atack Countermeasures

Circuit-level protection. Power balancing is used at circuit-level to minimize the side-channel leakage [15, 39, 60,

75, 82]. Others implement gate-level masking with complex logic gates [64, 69]. False-Key [89] uses a lightweight

ACM Trans. Arch. Code Optim.

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 19

0

50

100

150

200

100 1,000 10,000 100,000 1,000,000

PARADISE PARADISE-selective

0

50

100

150

200

50 500 5,000 50,000 500,000

G
u

e
ss

in
g

 E
n

tr
o

p
y

Number of Traces

(a) Basic Evaluation

0

50

100

150

200

50 500 5,000 50,000 500,000

Number of Traces

(b) Educated Evaluation

0

50

100

150

200

50 500 5,000 50,000 500,000

Number of Traces

(c) Advanced Evaluation

Fig. 19. Results of (a) basic, (b) educated, and (c) advanced security evaluation of Paradise-selective compared to Paradise.

Paradise-selective enables the protection only for secret-dependent regions.

Table 4. Comparison of existing power atack countermeasures for general-purpose processors.

Countermeasure
Algorithm No Overheads a Security Evaluation a

Technique
Agnostic Re-compile Area Power Performance Basic Educated Advanced

RIJID [3] 2% 27% 30% ‡ b − c − Random Code Injection

Block Shuler [11] 2% 1.5% 0.7% ‡ − − Coarse Instr. Shuling

PARAM [7] ∼20% − − ‡ − − Data Obfuscation

In
-O

rd
er

Blinking [2] − − 270% 10 − 100× 10 − 100× − Power Hiding

random-iso-perf ∼0% 0.8% 3.0% 12× 12× 5.5× Fine Instr. Re-ordering

random-iso-security ∼0% 0.4% 12.0% − − 34× Fine Instr. Re-ordering

random-aggressive ∼0% 0% 29.9% 122× 11× 38× Fine Instr. Re-ordering

Paradise (this work) 0.8% 1.2% 3.2% 261× 12× 34× Fine Instr. Re-ordering

O
u
t-
o
f-
O
rd
er

Paradise + Masking − d − d − d − − 62, 500× Instr. Re-ordering+Mask

baseline + Masking − d − d − d − − 112× Instr. Mask

a Values of other works are presented as reported. b ’‡’ for evaluation reported as negative and/or inconclusive tests that did not recover the key.
c ’−’ for imprecise reporting or absence of reporting of the information. d Masking overheads are beyond the scope of this work.

technique that combines power balancing and hardware masking. But, it is speciic to AES engines. Noise injection

and power isolation are techniques that hide the intermediate values of encryption operations [22, 34, 41, 42, 83, 84].

The authors of ANSI [22] combine these two techniques to implement a generic solution for encryption algorithms

with negligible performance overhead. Most solutions at the circuit level incur high power and/or area overheads

and are designed for encryption-speciic hardware only.

Obfuscated execution. One class of mitigations for power analysis attacks is obfuscating the execution

and data [55]. ARDPE [28] randomizes the data going on to a CGRA engine. However, it is only tailored to

encryption engines. Blinking [2] uses a software controller to disconnect the core from the system during the

leakiest moments of the execution but incurs a performance overhead of up to 2.7×. PARAM [7] investigates the

leakiest modules of a RISC-V design and addresses them separately in a way that data will be in obfuscated form

until they are processed. They require modifying the RTL code and de-obfuscating/obfuscating the data upon

each access. Maya [65] is generic power obfuscation technique that uses formal control to keep the power close

to the desired target function, but unlike Paradise does not cover key extraction attacks.

Random code injection. RIJID [3] proposes a HW/SW co-design where the compiler marks the regions of

the code that need protection, and the hardware injects (irrelevant) instructions at random intervals during their

execution. This results in a 30% performance overhead.

Random shufling. Block Shuler [11] proposes a hardware/software co-design where the compiler detects

independent blocks and inserts shuffle instructions that allow the processor to fetch instructions based on a

ACM Trans. Arch. Code Optim.

20 • Y. Chen et al.

random permutation of independent blocks (i.e., it implements a coarse-grained instruction reordering where

independent blocks of the code are randomly reordered). However, Paradise provides a ine-grained instruction

reordering strategy and we adopt such mechanism because of three main reasons: (1) coarse-grained reordering

keeps the relative order of execution within a block of instructions which makes it easier for an adversary to

detect the leaky regions of the block. (2) Detecting and partitioning a code into independent blocks for shuling

is usually algorithm-speciic (e.g., prior work [11, 62] reorders the encryptions rounds of AES), and in addition, it

requires software-level analysis and recompilation. On the other hand, Paradise provides a more generic solution

without recompiling the binaries. Finally, (3) our ine-grained strategy to detect the slack and critical/non-critical

instructions allows Paradise to have minimal performance overheads in a generic way (even for SPEC CPU2017

applications as representative benchmarks for performance analysis).

9.2 Security Evaluation of Prior Work

Table 4 also summarizes the reported security improvements of prior work and our evaluated designs with

diferent types of adversaries. Note, that we compare the security beneits of each method to their corresponding

unprotected baseline with respect to the same adversary.

The security evaluations of Blinking [2] falls into the educated category due to its SNR reduction technique.

RIJID [3] and Block Shuler [11] report inconclusive results and do not mount suicient attacks to recover the

secret keys. PARAM’s [7] evaluation is classiied as basic. However, they similarly report negative (inconclusive)

results which are not suicient to evaluate security, as they report the protected implementation is resistant with

up to 1M traces. Moreover, the security of the obfuscation itself is not investigated.

10 Conclusion

In this work, we propose a general-purpose processor with a signiicantly improved level of security and always-on

protection against power side-channel attacks, with little efect on application performance. We exploit the time

between operand availability of critical instructions (slack) to create high-performance random schedules that

obfuscate the execution with increased power noise. In addition, we introduce an advanced and comprehensive

security evaluation model that complies with the highest security standards. Paradise ofers a stronger security

guarantee than demonstrated in previous works and improves security against advanced power analysis attacks

by 556× when combined with Boolean Masking over a baseline only protected by masking, and 62, 500× over an

unprotected baseline. Paradise introduces low performance, power, and area overheads of 3.2%, 1.2%, and 0.8%

respectively.

References

[1] AES-128. Accessed 09-04-2023. https://github.com/openluopworld/aes_128.

[2] Alric Althof, Joseph McMahan, Luis Vega, Scott Davidson, Timothy Sherwood, Michael Taylor, and Ryan Kastner. 2018. Hiding

intermittent information leakage with architectural support for blinking. In International Symposium on Computer Architecture (ISCA).

[3] Jude Angelo Ambrose, Roshan G. Ragel, and Sri Parameswaran. 2007. RIJID: Random Code Injection to Mask Power Analysis Based Side

Channel Attacks. In Design Automation Conference (DAC).

[4] Jude A. Ambrose, Roshan G. Ragel, and Sri Parameswaran. 2012. Randomized Instruction Injection to Counter Power Analysis Attacks.

ACM Transactions on Embedded Computing Systems (2012).

[5] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert

Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić.

2020. Chipyard: Integrated Design, Simulation, and Implementation Framework for Custom SoCs. IEEE Micro (2020).

[6] Cédric Archambeau, Eric Peeters, F-X Standaert, and J-J Quisquater. 2006. Template attacks in principal subspaces. In International

Workshop on Cryptographic Hardware and Embedded Systems (CHES).

[7] M. Arsath K F, V. Ganesan, R. Bodduna, and C. Rebeiro. 2020. PARAM: A Microprocessor Hardened for Power Side-Channel Attack

Resistance. In International Symposium on Hardware Oriented Security and Trust (HOST).

ACM Trans. Arch. Code Optim.

https://github.com/openluopworld/aes_128

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 21

[8] Melissa Azouaoui et al. 2020. A systematic appraisal of side channel evaluation strategies. In International Conference on Security

Standardisation Research (SSR).

[9] Lejla Batina, Milena Djukanovic, Annelie Heuser, and Stjepan Picek. 2021. It Started with Templates: The Future of Proiling in

Side-Channel Analysis. In Security of Ubiquitous Computing Systems.

[10] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouf, Matthieu Rivain, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. 2011.

Mutual information analysis: a comprehensive study. Journal of Cryptology (2011).

[11] Ali Galip Bayrak, Nikola Velickovic, Paolo Ienne, and Wayne Burleson. 2012. An architecture-independent instruction shuler to protect

against side-channel attacks. ACM Transactions on Architecture and Code Optimization (2012).

[12] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. 2015. The SIMON and SPECK

lightweight block ciphers. In Design Automation Conference (DAC).

[13] Ryad Benadjila, Emmanuel Prouf, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. 2020. Deep learning for side-channel analysis and

introduction to ASCAD database. Journal of Cryptographic Engineering (2020).

[14] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power analysis with a leakage model. In International Workshop on

Cryptographic Hardware and Embedded Systems (CHES).

[15] Marco Bucci, Luca Giancane, Raimondo Luzzi, and Alessandro Triiletti. 2006. Three-phase dual-rail pre-charge logic. In International

Workshop on Cryptographic Hardware and Embedded Systems (CHES).

[16] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouf. 2017. Convolutional neural networks with data augmentation against jitter-based

countermeasures. In International Conference on Cryptographic Hardware and Embedded Systems (CHES).

[17] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. 2002. Template attacks. In International Workshop on Cryptographic Hardware and

Embedded Systems (CHES).

[18] Md Haizul Islam Chowdhuryy, Zhenkai Zhang, and Fan Yao. 2024. PowSpectre: Powering up speculation attacks with tsx-based replay.

In Asia Conference on Computer and Communications Security (AsiaCCS).

[19] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jafe, Gary Kenworthy, Pankaj Rohatgi, et al. 2013. Test vector leakage

assessment (TVLA) methodology in practice. In International Cryptographic Module Conference (ICMC).

[20] Jean-Sébastien Coron. 2014. Higher order masking of look-up tables. In International Conference on the Theory and Applications of

Cryptographic Techniques (Eurocrypt).

[21] Joan Daemen, Seth Hofert, Michaël Peeters, G Van Assche, and R Van Keer. 2020. Xoodyak, a lightweight cryptographic scheme. IACR

Transactions on Symmetric Cryptology (2020).

[22] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen. 2018. ASNI: Attenuated Signature Noise Injection for Low-Overhead

Power Side-Channel Attack Immunity. IEEE Transactions on Circuits and Systems I: Regular Papers (2018).

[23] Jesse De Meulemeester, Antoon Purnal, Lennert Wouters, Arthur Beckers, and Ingrid Verbauwhede. 2023. SpectrEM: Exploiting

Electromagnetic Emanations During Transient Execution. In USENIX Security Symposium.

[24] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. 2012. Side-channel vulnerability factor: A metric for measuring information

leakage. In International Symposium on Computer Architecture (ISCA).

[25] Whitield Diie and George Ledin. 2008. SMS4 encryption algorithm for wireless networks. Cryptology ePrint Archive (2008).

[26] François Durvaux and François-Xavier Standaert. 2016. From improved leakage detection to the detection of points of interests in

leakage traces. In International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt).

[27] B. Fields, S. Rubin, and R. Bodik. 2001. Focusing processor policies via critical-path prediction. In International Symposium on Computer

Architecture (ISCA).

[28] Wei GE, Shenghua CHEN, Benyu LIU, Min ZHU, and Bo LIU. 2020. A Power Analysis Attack Countermeasure Based on Random Data

Path Execution For CGRA. IEICE Transactions on Information and Systems (2020).

[29] Barbara et al. Gigerl. 2021. Coco: Co-Design and Co-Veriication of Masked Software Implementations on CPUs.. In USENIX Security

Symposium.

[30] Benjamin Jun Gilbert Goodwill, Josh Jafe, Pankaj Rohatgi, et al. 2011. A testing methodology for side-channel resistance validation. In

NIST non-invasive attack testing workshop.

[31] Xavier Glorot and Yoshua Bengio. 2010. Understanding the diiculty of training deep feedforward neural networks. In International

Conference on Artiicial Intelligence and Statistics (AISTATS).

[32] Alagic Gorjan, Alperin-Sherif Jacob, Apon Daniel, Cooper David, Dang Quynh, Kelsey John, Liu Yi-Kai, Miller Carl, Moody Dustin,

Peralta Rene, Perlner Ray, Robinson Angela, and Smith-Tone Daniel. 2020. Status Report on the Second Round of the NIST Post-Quantum

Cryptography Standardization Process. National Institute of Standards and Technology (NIST).

[33] Vincent Grosso and François-Xavier Standaert. 2018. Masking proofs are tight and how to exploit it in security evaluations. In

International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt).

[34] Tim Güneysu and Amir Moradi. 2011. Generic side-channel countermeasures for reconigurable devices. In International Workshop on

Cryptographic Hardware and Embedded Systems (CHES).

ACM Trans. Arch. Code Optim.

22 • Y. Chen et al.

[35] Hendra Guntur, Jun Ishii, and Akashi Satoh. 2014. Side-channel attack user reference architecture board SAKURA-G. In Global Conference

on Consumer Electronics (GCCE).

[36] Miao He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin, and Mark Tehranipoor. 2019. RTL-PSC: Automated power side-channel

leakage assessment at register-transfer level. In VLSI Test Symposium (VTS).

[37] Zhangqing He, Tianyong Ao, Meilin Wan, Kui Dai, and Xuecheng Zou. 2016. ERIST: An eicient randomized instruction insertion

technique to counter side-channel attacks. IAENG International Journal of Computer Science (2016).

[38] Helmut Hlavacs, Thomas Treutner, Jean-Patrick Gelas, Laurent Lefevre, and Anne-Cecile Orgerie. 2011. Energy consumption side-channel

attack at virtual machines in a cloud. In International Conference on Dependable, Autonomic and Secure Computing (DASC).

[39] David D Hwang, Kris Tiri, Alireza Hodjat, B-C Lai, Shenglin Yang, Patrick Schaumont, and Ingrid Verbauwhede. 2006. AES-based

security coprocessor IC in 0.18-��ℎ���� CMOS with resistance to diferential power analysis side-channel attacks. IEEE Journal of

Solid-State Circuits (2006).

[40] ISO. 2019. Information technology Ð Security techniques Ð Testing methods for the mitigation of non-invasive attack classes against

cryptographic modules. In International Organization for Standardization,. https://www.iso.org/obp/ui/#iso:std:iso-iec:17825:ed-1:v1:en

[41] Monodeep Kar, Arvind Singh, Sanu Mathew, Anand Rajan, Vivek De, and Saibal Mukhopadhyay. 2017. Improved power-side-channel-

attack resistance of an AES-128 core via a security-aware integrated buck voltage regulator. In 2017 IEEE International Solid-State Circuits

Conference (ISSCC).

[42] Monodeep Kar, Arvind Singh, Anand Rajan, Vivek De, and Saibal Mukhopadhyay. 2016. An integrated inductive VR with a 250MHz

all-digital multisampled compensator and on-chip auto-tuning of coeicients in 130nm CMOS. In European Solid-State Circuits Conference

(ESSCIRC).

[43] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin

Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanović. 2018.

FireSim: FPGA-accelerated Cycle-exact Scale-out System Simulation in the Public Cloud. In International Symposium on Computer

Architecture (ISCA).

[44] Keysight. Accessed 22-05-2023. Keysight IniniiVision DSOX3104T Oscilloscope. https://www.keysight.com/sg/en/product/DSOX3104T.

[45] Diederik P Kingma and Jimmy Ba. 2017. Adam: a method for stochastic optimization (2014).

[46] Paul Kocher, Joshua Jafe, and Benjamin Jun. 1999. Diferential power analysis. In Annual International Cryptology Conference (CRYPTO).

[47] Andreas Kogler, Jonas Juinger, Lukas Giner, Lukas Gerlach, Martin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.

2023. Collide+Power: Leaking Inaccessible Data with Software-based Power Side Channels. In USENIX Security Symposium.

[48] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit Tiwari, and Mark Silberstein. 2018. Power to peep-all:

Inference Attacks by Malicious Batteries on Mobile Devices. Proc. Priv. Enhancing Technol. (2018).

[49] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS:

Software-based power side-channel attacks on x86. In IEEE Symposium on Security and Privacy (SP).

[50] Adam Malamy, Rajiv N Patel, and Norman M Hayes. 1994. Methods and apparatus for implementing a pseudo-LRU cache memory

replacement scheme with a locking feature. US Patent 5,353,425.

[51] Stefan Mangard. 2004. Hardware countermeasures against DPAśa statistical analysis of their efectiveness. In Cryptographers’ Track at

the RSA Conference.

[52] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2008. Power analysis attacks: Revealing the secrets of smart cards. Springer Science

& Business Media.

[53] George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software (2003).

[54] Macarena C Martínez-Rodríguez, Ignacio M Delgado-Lozano, and Billy Bob Brumley. 2021. SoK: Remote power analysis. In International

Conference on Availability, Reliability and Security (ARES).

[55] David May, Henk L Muller, and Nigel P Smart. 2001. Non-deterministic processors. In Australasian Conference on Information Security

and Privacy.

[56] Daniel S. McFarlin, Charles Tucker, and Craig Zilles. 2013. Discerning the Dominant Out-of-Order Performance Advantage: Is It

Speculation or Dynamism?. In International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS).

[57] Turan Meltem Sönmez, McKay Kerry, Chang Donghoon, Çalık Çağdaş, Bassham Lawrence, Kang Jinkeon, and Kelsey John. 2021. Status

Report on the Second Round of the NIST Lightweight Cryptography Standardization Process. National Institute of Standards and Technology

(NIST).

[58] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. 1999. Investigations of Power Analysis Attacks on Smartcards. Smartcard

(1999).

[59] Amir Moradi and François-Xavier Standaert. 2016. Moments-correlating DPA. In Workshop on Theory of Implementation Security.

[60] Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain Guilley. 2010. BCDL: A high speed balanced DPL for

FPGA with global precharge and no early evaluation. In Design, Automation & Test in Europe Conference & Exhibition (DATE).

ACM Trans. Arch. Code Optim.

https://www.iso.org/obp/ui/#iso:std:iso-iec:17825:ed-1:v1:en
https://www.keysight.com/sg/en/product/DSOX3104T

PARADISE: Criticality-Aware Instruction Reordering for Power Atack Resistance • 23

[61] Siddika Berna Ors, Frank Gurkaynak, Elisabeth Oswald, and Bart Preneel. 2004. Power-analysis attack on an ASIC AES implementation.

In International Conference on Information Technology: Coding and Computing (ITCC).

[62] S. Patranabis, D. B. Roy, P. K. Vadnala, D. Mukhopadhyay, and S. Ghosh. 2016. Shuling across rounds: A lightweight strategy to counter

side-channel attacks. In International Conference on Computer Design (ICCD).

[63] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam Bhasin, and Axel Legay. 2018. On the performance of

convolutional neural networks for side-channel analysis. In International Conference on Security, Privacy, and Applied Cryptography

Engineering (SPACE).

[64] Thomas Popp, Mario Kirschbaum, Thomas Zeferer, and Stefan Mangard. 2007. Evaluation of the masked logic style MDPL on a

prototype chip. In International Workshop on Cryptographic Hardware and Embedded Systems (CHES).

[65] Raghavendra Pothukuchi, Sweta Pothukuchi, Petros Voulgaris, Alex Schwing, and Josep Torrellas. 2021. Maya: Using Formal Control to

Obfuscate Power Side Channels. In International Conference on Computer Architecture (ISCA).

[66] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. 2016. Simple key enumeration (and rank estimation) using histograms:

an integrated approach. In International Conference on Cryptographic Hardware and Embedded Systems (CHES).

[67] Emmanuel Prouf, Matthieu Rivain, and Régis Bevan. 2009. Statistical analysis of second order diferential power analysis. IEEE

Transactions on computers (2009).

[68] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-Channels through Obfuscated Execution. In USENIX

Security Symposium.

[69] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Verbauwhede. 2015. Consolidating masking schemes. In

Annual Cryptology Conference.

[70] Adi Shamir. 1979. How to share a secret. Commun. ACM (1979).

[71] Madura A Shelton, Łukasz Chmielewski, Niels Samwel, Markus Wagner, Lejla Batina, and Yuval Yarom. 2021. Rosita++: Automatic

higher-order leakage elimination from cryptographic code. In Conference on Computer and Communications Security (CCS).

[72] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic

Elimination of Power-Analysis Leakage in Ciphers. In Network and Distributed System Security Symposium (NDSS).

[73] Leslie N. Smith and Nicholay Topin. 2018. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates.

arXiv:1708.07120

[74] SMx Implementation Accessed 15-05-2024. https://github.com/NEWPLAN/SMx.

[75] Danil Sokolov, Julian Murphy, Alexander Bystrov, and Alexandre Yakovlev. 2005. Design and analysis of dual-rail circuits for security

applications. IEEE Trans. Comput. (2005).

[76] François-Xavier Standaert. 2018. How (not) to use welch’s t-test in side-channel security evaluations. In International Conference on

Smart Card Research and Advanced Applications (CARDIS).

[77] François-Xavier Standaert, Tal G Malkin, and Moti Yung. 2009. A uniied framework for the analysis of side-channel key recovery

attacks. In International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt).

[78] Synopsys Design Compiler (DC). Accessed 15-05-2024. https://www.synopsys.com/implementation-and-signof/rtl-synthesis-test/dc-

ultra.html.

[79] Synopsys PrimePower. Accessed 15-05-2024. https://www.synopsys.com/implementation-and-signof/signof/primepower.html.

[80] Synopsys VCS. Accessed 15-05-2024. https://www.synopsys.com/veriication/simulation/vcs.html.

[81] The Berkeley Out-of-Order RISC-V Processor. Accessed 10-05-2024. https://github.com/riscv-boom/riscv-boom.

[82] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. 2002. A dynamic and diferential CMOS logic with signal independent power

consumption to withstand diferential power analysis on smart cards. In European Solid-State Circuits Conference (ESSCIRC).

[83] Carlos Tokunaga and David Blaauw. 2009. Secure AES engine with a local switched-capacitor current equalizer. In International

Solid-State Circuits Conference-Digest of Technical Papers.

[84] C. Wang, M. Yan, Y. Cai, Q. Zhou, and J. Yang. 2017. Power Proile Equalizer: A Lightweight Countermeasure against Side-Channel

Attack. In International Conference on Computer Design (ICCD).

[85] Yiming Wen and Weize Yu. 2019. Machine learning-resistant pseudo-random number generator. Electronics Letters (2019).

[86] M Witteman, J Jafe, and P Rohatgi. 2011. Eicient side channel testing for public key algorithms: RSA case study. Technical Report.

Technical report, Cryptography Research.

[87] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. 2020.

Open DNN box by power side-channel attack. IEEE Transactions on Circuits and Systems II: Express Briefs (2020).

[88] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. 2015. A study on power side channels on mobile devices. In Asia-Paciic Symposium

on Internetware.

[89] Weize Yu and Selçuk Köse. 2017. A lightweight masked AES implementation for securing IoT against CPA attacks. IEEE Transactions on

Circuits and Systems I: Regular Papers (2017).

[90] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. 2020. Methodology for eicient CNN architectures in proiling

attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems (CHES) (2020).

ACM Trans. Arch. Code Optim.

https://arxiv.org/abs/1708.07120
https://github.com/NEWPLAN/SMx
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/verification/simulation/vcs.html
https://github.com/riscv-boom/riscv-boom

24 • Y. Chen et al.

[91] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. SonicBOOM: The 3rd Generation Berkeley Out-of-Order

Machine. Fourth Workshop on Computer Architecture Research with RISC-V (2020).

Received 26 October 2023; revised 26 July 2024; accepted 6 September 2024

ACM Trans. Arch. Code Optim.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Power Analysis Attacks
	2.2 Motivation and Overview

	3 Threat Model and Assumptions
	4 Paradise Microarchitecture
	4.1 Definitions of Instruction Criticality and Slack
	4.2 Slack Unit
	4.3 Detection of Criticality and Slack
	4.4 Measuring Slack and Randomizing Execution
	4.5 Delay Injection
	4.6 Example

	5 Security Evaluation Methodology
	5.1 Limitations of Simple Pass-Fail Tests
	5.2 Proposed Evaluation Framework
	5.3 Security Metrics

	6 Experimental Setup
	7 Experimental Results
	7.1 Security Evaluation
	7.2 Performance Evaluation
	7.3 Power and Area Overheads

	8 Discussion
	8.1 Paradise against Privacy Attacks
	8.2 Paradise-selective: Compiler-Informed Protection

	9 Related Work
	9.1 Power Analysis Attack Countermeasures
	9.2 Security Evaluation of Prior Work

	10 Conclusion
	References

