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SWITCHES is a task-based dataflow runtime that implements a lightweight distributed triggering system for

runtime dependence resolution and uses static scheduling and compile-time assignment policies to reduce

runtime overheads. Unlike other systems, the granularity of loop-tasks can be increased to favor data-locality,

even when having dependences across different loops. SWITCHES introduces explicit task resource allocation

mechanisms for efficient allocation of resources and adopts the latest OpenMP Application Programming

Interface (API), as to maintain high levels of programming productivity. It provides a source-to-source tool

that automatically produces thread-based code. Performance on an Intel Xeon-Phi shows good scalability and

surpasses OpenMP by an average of 32%.
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1 INTRODUCTION

Parallelism is currently the means to achieve high performance. But, scaling the number of threads
and cores alone does not result in improved application performance. In order to expose maximum
available parallelism and achieve increasing performance, scalability needs to be addressed at dif-
ferent levels and applications need to be developed using models that adapt better to their needs
(e.g., the Task model and the Dataflow paradigm). Assuming that an application is expressed by an
algorithm that exhibits enough parallelism, improving the performance is determined by a com-
bination of the following factors: scalable architectures, low-overhead runtime systems, efficient
use of the available resources, locality-aware execution, and productive programming tools.

Figure 1 presents how the state-of-the-art OpenMP runtime handles fine-grain task-parallelism
on a many-core system. The graph (on the right) shows the speedup over the sequential execu-
tion of a synthetic application as we increase the number of tasks but maintain the total problem
size constant. On the left of the figure is the dataflow graph of the synthetic application that is
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Fig. 1. Speedup on the Intel Xeon Phi with 240 threads, varying number of tasks, and constant input com-

pared to the sequential execution of a synthetic application. On the left we show the dataflow graph two

applications with four loops (the source code is presented later in Figure 4). The one on the left does not have

dependences across the loops but instead uses synchronization barriers (OMP-Static and OMP-Dynamic). The

one on the right has dependences across iterations of different loops (OMP-Dependency and SWITCHES). The

graph on the right shows OpenMP losing performance as we divide the problem size into more tasks (n).

composed of four parallel loops with a synchronization point between each one and each loop is di-
vided into n tasks. In theory, keeping the total work constant should keep the speedup unchanged.
Nevertheless, results show that as we increase the number of tasks the speedup is reduced. This
can be caused by two factors: (1) the amount of work per task and (2) the synchronization overhead
of the runtime system. As long as the amount of work per task is large enough, the synchroniza-
tion time can be hidden, but as we increase the number of tasks for a constant workload, the
work per task is reduced while the synchronization primitives increase. This results in increased
synchronization overhead and consequently a loss in performance.

With the application in Figure 1, we try to show the impact of the runtime overhead on perfor-
mance using different OpenMP scheduling policies. In OMP-Static and OMP-Dynamic the iterations
of each loop are executed in parallel but synchronization points (barriers) must be added between
the loops (dataflow graph on the left). In the former, tasks are scheduled statically, while in the
latter the runtime handles everything dynamically. The static implementation has much less per-
formance loss as most scheduling operations are handled during compilation. The dynamic sched-
uler, on the other hand, has a lot more work to do synchronizing all the tasks during execution.
OMP-Dependency and SWITCHES remove the barriers and add dependences across the iterations
of the loops (dataflow graph on the right), but as the results show, the overhead of runtime de-
pendence resolution in OpenMP dominates the execution time. The implementation of lightweight
synchronization primitives in SWITCHES, in combination with a static runtime system reduces the
overheads and achieves the highest performance. Its low-overhead design also results in scaling
performance even when increasing the number of tasks. Although this is just a simple application,
it presents a real problem of current task-based runtime systems with fine-grain parallelism, which
can affect performance scalability in current and future many-core systems.

SWITCHES introduces a lightweight runtime system that supports the task-based dataflow
model as a way to scale performance on many-core architectures. The dataflow paradigm has
been proposed a long time ago [9, 10] but has only recently been widely adopted, as it is one
of the most effective ways to exploit large-scale parallelism [4, 15, 19, 29–31, 35, 43, 46]. It is
mostly used in the form of task-based parallel systems, which allow for efficient handling of
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synchronization, memory access, and communication latencies. This leads to better utilization of
resources and increased performance in large-scale High-Performance Computing (HPC) systems
with hundreds to thousands of cores [44].

SWITCHES implements a triggering system for dependence resolution, which distributes the
runtime operations to all participating threads. It applies compile-time static scheduling and as-
signment policies in order to reduce runtime overheads. It improves locality, by providing simple
mechanisms that allow flexible definition of task granularity. It provides constructs for declaring
cross-loop dependences, consequently increasing the application coverage and improving the per-
formance of applications with parallelism across different loops. It also provides for task resource
allocation constructs that make efficient use of the hardware units and improve performance.
SWITCHES maintains high levels of programming productivity by extending the latest standard
of the widely used OpenMP Application Programming Interface (API) [8], while providing for a
software tool that automatically produces parallel code.

SWITCHES is evaluated on a 61-core Intel Xeon Phi, using both task- and data-parallel applica-
tions from different benchmark suites. Results show good performance scalability for all applica-
tions tested and a considerable speedup increase compared to the best OpenMP results.

The main contributions of this work are the following:

• a lightweight, scalable runtime system for task-based dataflow execution on HPC many-
cores, called SWITCHES;

• extensions to the OpenMP v4.5 API to support explicit resource allocation and cross-loop
dependences with variable granularity on the taskloop directive;

• a source-to-source tool (Translator) that uses the source code with directives to produce par-
allel pthread code embedded with the runtime, which can be compiled with any commodity
compiler;

• a comparison of SWITCHES performance with state-of-the-art OpenMP on a real HPC
many-core using task- and data-parallel applications.

This article is organized as follows. In Section 2, we present the concepts of the dataflow model.
In Section 3, we describe the SWITCHES execution model and runtime, while in Section 4 we
present the extensions to the OpenMP API we propose. In Section 5, we describe the Translator. In
Section 6, we describe our experimental setup and in Section 7 we present our results. In Section 8,
we discuss the related work, and finally, in Section 9 we summarize our conclusions.

2 THE DATAFLOW MODEL

The original dataflow model was proposed by Jack Dennis in the early 1970s [9, 10] as an alternative
to the control-flow (von Neumann) model. Instructions in a dataflow program are executed when
all their input operands are available, creating an asynchronous (non-blocking) execution. The
availability of the operands is expressed using data dependences, which define a dataflow graph
representing the order of the execution. Using the dataflow graph and the input operands required
by each instruction, one can expose parallelism in a program. Many systems today try to explore
fine-grain parallelism by using dataflow-like models as a way to achieve high performance and
utilization on large-scale many-core systems with hundreds to thousands of cores [15, 19, 29, 31].

The main advantage of the dataflow model is the ability to exploit maximum parallelism from an
application by exposing fine-grain tasks. This large degree of parallelism can be exploited to hide
the latency of memory accesses. Unlike other models, dataflow does not require synchronization
mechanisms as the correctness of the execution is assured by enforcing the data dependences.
Nevertheless, exploiting fine-grain parallelism was also the limiting factor in the success of this
model in past implementations, mostly due to the overheads in enforcing the data dependences at
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Fig. 2. Type of tasks in the SWITCHES execution model.

the instruction level. More recent attempts managed to overcome these overheads by adopting the
model at a coarser granularity (e.g., tasks), consequently achieving high performance [15, 29–31].

Another relevant factor toward using dataflow for increasingly large systems is its disciplined
access to shared data. Assuming a task-based implementation of dataflow, it is ensured by the
model that no concurrent tasks will be modifying the same data, as this would result in a data
dependence violation [9, 10, 32]. Therefore, in a shared-memory system the dataflow model does
not require a hardware implementation of a cache-coherence protocol as access on shared data
may be coordinated by the model itself. Correctness of the application will be assured simply by
updating cached data to and from main memory on completion of a task, i.e., flushing updated
values to memory and invalidating cached copies in other cores. The fact that hardware cache-
coherence is not required by the dataflow model, allows for increasing performance scalability on
many-cores as shown in [13], reduces hardware costs, and improves energy-efficiency [48].

3 THE SWITCHES SYSTEM

SWITCHES is built to satisfy two major requirements: (1) the scalability of application perfor-
mance, and (2) the reduction runtime overheads. To achieve scalability, it implements the dataflow
model as a fully de-centralized runtime by evenly distributing the scheduling operations to all
software threads. To reduce runtime overheads, tasks are assigned to threads statically at compile-
time. In addition, each task holds its own scheduling structures that will be loaded in the scheduler
during execution. This design requires minimum support for dynamic scheduling of tasks, conse-
quently reducing runtime overheads. SWITCHES is publicly available for download in [11].

3.1 The Execution Model

SWITCHES is a task-based model that allows the definition of dependences on every task in an ap-
plication. The dependences form a producer/consumer relationship between tasks, where one task
produces data and others consume it. The dependence itself shows the role of each task, i.e., if there
is a dependence from taskA to taskB, then taskA is the producer and taskB is the consumer. The
dependences also define when a task can be executed, thus additional synchronization primitives
are not required. Dependences are resolved only after all producers have completed execution, and
only then can a consumer task execute.

There are three types of tasks in a SWITCHES program (Figure 2): (1) Simple-Tasks, which
represent a non-iterative structured block, (2) Loop-Tasks, which represent iterations of a for

loop, and (3) Cross-Loop-Tasks, which represent iterations of a for loop with dependences on
iterations of other loops. The difference between (2) and (3) is the format of their dependences.
Loop-Tasks are iterations of a loop that will execute in parallel but are isolated from the rest of
the tasks. That is, if another task (of type (1) or (2)) depends on a Loop-Task, then it will wait for the
entire loop to finish before starting execution. Cross-Loop-Tasks are iterations that have direct
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Fig. 3. The architectural design of SWITCHES.

dependences on iterations of other loops. Assuming a granularity of one, the iterations of a loop
have a one-to-one dependence with the iterations of another loop, therefore providing cross-loop
parallelism.

The level of granularity in such a scenario can be defined by the programmer. The granularity
is increased by packing consecutive iterations into a single task and is particularly efficient as
it favors spatial locality. A smaller granularity, on the other hand, improves the parallelism by
increasing the number of tasks (fine-grain parallelism). It is important to notice that, although
cross-loop iteration dependences and task-loop granularity are supported by the latest release of
the OpenMP standard (v4.5), the combination of the two clauses is not.

3.2 The Runtime

The scheduling structures of the runtime are called switches and are implemented using sim-
ple memory constructs, stored in shared-memory and cross-referenced by the tasks using them.
Switches are Boolean variables that denote whether a task has executed (ON) or not (OFF). Each
task is assigned its own unique switch that can only be updated by the thread that executes the
task (single-writer). A task is ready to execute only when all its producers’ switches are set to ON.
Each thread checks the producers’ switches of a task to be executed (multiple-readers) and if all
are set to ON, the task is executed.

Since SWITCHES is following a single-writer/multiple-readers model for all runtime data, a pro-
tection mechanism for simultaneous access (e.g., locking) on switches is not required. Because it is
built on top of a shared-memory system, switches are manually updated (from producers caches)
to main memory and self-invalidated in consumers caches. This process adds little overhead to the
execution as the information accessed by each thread is statically assigned at compile-time.

The architectural design of SWITCHES in Figure 3 shows that the data of both the runtime and
the application are stored in the shared-memory of the system. One or more software threads can
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ALGORITHM 1: The SWITCHES Scheduler

1: procedure Schedule

2: while !empty (ownTaskQueue ) do

3: task ← getNextTask(ownTaskQueue )
4: ready ← checkSwitches(task )
5: if ready = TRUE then

6: execute(task )
7: turnSwitchON(task )
8: removeTaskFromQueue (task,ownTaskQueue )
9: end if

10: end while

11: resetSwitches(ownTaskSwitches )
12: end procedure

be assigned to each core (or hardware thread), depending on the total number of threads defined
by the user. A software thread consists of the SWITCHES Scheduler and the tasks it will execute.
Each task is a combination of the application source code, its own switch, and remote references
to all switches of its producers.

The SWITCHES runtime system is implemented in the form of a software unit called Sched-

uler. The Scheduler is responsible for monitoring producers’ switches, updating task switches, and
triggering ready tasks for execution.

3.3 The Scheduler

Most task-based parallel systems that exist today provide for a single, centralized scheduler that
monitors shared-data during execution and resolves dependences based on reads and writes on
those data [8, 15]. Depending on the number of tasks, and the dependences defined, this can lead
to an overload of the scheduling unit which can be expensive (as results show in Figure 1).

To solve this, in SWITCHES each thread is equipped with its own Scheduler. Every Scheduler is
statically assigned a number of tasks to execute and only has knowledge of their incoming depen-
dences, based on the cross-references that each task holds on its producers’ switches (Figure 3). It
does not require global information of the application, making it simple and scalable regardless of
the number of threads, as the more threads used in the execution the less information each one
will hold.

Algorithm 1 shows the pseudo-code of the Scheduler. The Scheduler is assigned a number of
tasks at compile-time in its ownTaskQueue and executes a busy-wait loop (line 2) until all assigned
tasks are finished. The Scheduler first gets a waiting task from its ownTaskQueue (line 3). It checks
the switches of its producers and if all are set to ON, it triggers the task for execution (line 4). If at
least one producer has not yet finished, the task is not ready for execution and the Scheduler gets
the next task from its ownTaskQueue. To minimize long waits of tasks that are ready to execute, the
checkSwitches() operation (in line 4) stops immediately when it finds the first producer switch
that is not set to ON. Also, as soon as a task finishes execution, the Scheduler sets its switch to ON
(line 7) and removes it from the ownTaskQueue (line 8), so it will not be checked again.

When a thread finishes all its assigned tasks (its ownTaskQueue is empty), the Scheduler breaks
the busy-wait loop, resets all its tasks’ switches (line 11), exits the current parallel section, and
returns to the main program. Switches are reset to avoid creating multiple instances of the same
code and the same switches in case there is a repetitive execution of the same tasks later in the
program (e.g., a function that is called multiple times). To avoid resetting switches that are still
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Table 1. The Basic SWITCHES Programming API. In Bold We Emphasize

Our Extensions Compared to OpenMPa

Pragma Directives Supported Clauses (Optional) Description

#pragma omp
parallel

num_threads(NUMBER)
private(list)

Defines a parallel function to be
executed by NUMBER threads and
private is used to declare
variables as private to each thread.

#pragma omp
parallel for

private(list)
num_threads(NUMBER)
schedule(type:[,CHUNK])
reduction(OPERATION:list)

Defines a parallel loop with each
iteration considered a task. All
clauses have the same
functionality as in OpenMP.

#pragma omp task
#pragma omp master

private(list)
firstprivate(list)
depend(type:list)

Defines a task and its dependences
using the depend() clause.
private and firstprivate have
the same functionality as in
OpenMP. The master clause in
SWITCHES extends a normal task
that will be executed by the master
thread.

#pragma omp
taskloop
#pragma omp for

private(list)
firstprivate(list)
grainsize(CHUNK)
depend(type:list)
num_threads(NUMBER)
schedule(type:[,CHUNK])
reduction(OPERATION:list)

Defines a loop task with
grainsize defining the number of
consecutive iterations assigned to
each task. The depend clause is
used to apply dependences to the
iterations, while the num_threads
clause explicitly allocates resources
for a loop task. The schedule
clause defines the scheduling
policy of the loop (static or
cross). A taskloop directive can
also support a reduction function
using the reduction clause.

aMore directives are implemented but in this table we present the most relevant ones to the applications tested.

in use by other threads, resetting takes places only after all tasks of a parallel section have been
completed.

4 THE SWITCHES API

The API of SWITCHES is an extension to the latest OpenMP v4.5 [36]. The applications are written
in C/C++ with tasks and dependences declared using compiler directives. We chose the API of
OpenMP because it is widely used for parallel programming in shared-memory environments and
since v4.0 provides a complete set of directives for declaring tasks and dependences. Consequently,
it satisfies the productivity goal of quickly porting applications for execution with SWITCHES. The
SWITCHES API implements all task directives from OpenMP v4.5 and extends them by using ex-
isting clauses from non-task directives such as num_threads, schedule, and reduction. Table 1
summarizes the basic directives used for writing a SWITCHES program and highlights in bold
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the extensions implemented. It is also important to notice that even though at this time we only
implement a portion of the OpenMP API, the SWITCHES runtime will not become heavier if we
implement the entire API as we follow a static runtime approach. All necessary scheduling infor-
mation is produced during the compilation of each application keeping the runtime system simple
and light. For conventional OpenMP implementations (that use a dynamic runtime system) to be
more flexible with different applications most scheduling data is produced at runtime and require
more information to be kept by the runtime system.

4.1 Compiler Directives

Any tasks declared in a SWITCHES program must be enclosed in a parallel section using a #pragma
omp parallel directive. A parallel section works in the same way as in OpenMP and denotes
that all enclosed tasks are to be executed in parallel according to their dependences. The use of
single directive is not required as in OpenMP, since tasks will only be created once statically
at compile time and started when the master thread reaches the specific parallel section. Any
code written in a parallel section that is not enclosed in a task directive will be executed by all
participating threads as in OpenMP. Different parallel sections are executed sequentially in the
order found in the program, just like in OpenMP. Also, all data are considered shared across the
entire program unless declared otherwise using the optional private or firstprivate clauses.
The former creates a new empty variable private for every task, while the latter will also initialize
it with the value of the corresponding global variable at the time the task is called.

The #pragma omp task directive defines a structured block as a task of type Simple-Task. The
depend(type:list) clause defines the data processed by the task. The list argument holds the
name of the data (variables, arrays, etc.). The type argument indicates whether the data will be
read (in), written (out), or both (inout).

The #pragma omp taskloop directive declares iterations of a loop as tasks of type Loop-Task or
Cross-Loop-Task. Similarly to OpenMP, the grainsize clause defines the number of consecutive
iterations to be packed for each task. In contrast to OpenMP, in SWITCHES the user can explicitly
define the number of threads to use for the execution of a taskloop with the num_threads clause.
This can be beneficial for applications with limited parallelism where loops with little work do
not occupy all available resources. By using this clause it is possible to utilize cores, that would
otherwise be idle or free cores that do not do any work at all. SWITCHES also supports the defi-
nition of dependences on a taskloop directive. The depend clause is used as described earlier for
the task directive. The SWITCHES taskloop directive also implements the schedule clause (from
the #pragma omp for directive). This clause is used to define a policy for scheduling loop tasks
to threads. Two policies are supported at the moment: (1) static, which is similar to OpenMP
and (2) cross, which declares the iterations of the loop as tasks with dependences. With static,
iterations of the loop are declared as tasks of type Loop-Tasks, while with cross iterations are
declared as Cross-Loop-Tasks. Note that, in such case all associated loops must have the cross
policy.

If the static scheduling policy is used along with the depend statement, a single dependence
will be declared on the entire loop. If the cross policy is used, dependences will be applied on
individual iterations of the associated loops and create a scenario with Cross-Loop Iteration Depen-

dences. The CHUNK parameter is used to define the number of consecutive iterations to be packed
in a single task (similarly to the grainsize clause). The final extension of SWITCHES compared
to OpenMP is the reduction clause where a loop of tasks can be declared as having a reduction
operation after all iterations are completed. SWITCHES supports all OpenMP standard reduction
operations with any number of reduction variables declared in the list option.
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4.2 Cross-Loop Iteration Dependences

As explained earlier, OpenMP does not allow the definition of dependences on a taskloop direc-
tive. It supports dependences on loop iterations only by using the task directive within the body of
a for loop. This limits the level of granularity of tasks with dependences to one iteration per task,
affecting the locality of the data and limiting the performance in certain applications. To increase
the level of granularity of a taskloop, OpenMP offers the grainsize clause but since dependences
cannot be defined on a taskloop directive, a synchronization barrier will be inserted at the end of
the loop. This adds additional synchronization overheads and ignores cross-loop parallelism that
may exist between two different loops.

With the extensions on the taskloop directive described earlier, SWITCHES allows the pack-
ing of consecutive iterations into a single task and can then define dependences on these tasks
(Cross-Loop-Tasks). Thus, SWITCHES provides locality for tasks of the same loop and at the same
time offers asynchronous execution of tasks from different loops (cross-loop parallelism) by remov-
ing all barrier synchronization. Note that this is applied to different loops, in contrast to OpenMPs’
doacross technique that uses the ordered directive to serialize iterations in nested loops [36].

4.3 Task Resource Allocation

The distribution of resources within a parallel region in OpenMP is a responsibility of the run-
time. OpenMP only allows explicit definition of resources in a parallel construct, which denote
how many threads will participate in the specified parallel region. But, the increased parallelism
and dependences in task-based models provide the user with information that can be vital to the
performance of an application. Dependences can be a natural limitation in the scalability of an
algorithm, and using the entire pool of execution units leads to wasting resources. A possible so-
lution in a dynamic runtime system is the use of a work-stealing approach that reassigns tasks to
different threads during execution. Such a technique tries to balance the workload in the available
resources but it also increases the work of the scheduler and depending on the application it may
increase runtime overheads. Such a solution cannot be used in a static runtime system as it would
diminish all the benefits of a static implementation. To address this problem, in SWITCHES we
employ the explicit allocation of resources per task. SWITCHES extends the taskloop directive to
use the num_threads clause to allow for explicit definition of threads to be used for the execution
of Loop-Tasks and Cross-Loop-Tasks. Therefore, SWITCHES allows for finer-grain allocation
of resources that overcomes the scalability boundary in algorithms with data dependences and
efficiently uses the available hardware resources.

4.4 Example

Figure 4 shows an example that makes use of the extensions proposed. It depicts a kernel with two
loops that have cross-loop iteration dependences and split the execution resources. Figure 4 also
presents a graphical diagram of the same example. Loop A is producing data in array k1, while Loop

B consumes data from k1, thus defining a dependence. Analyzing the algorithm, we find that the
iterations of the two loops have a one-to-one dependence on array k1 only, thus only k1 needs to be
declared in the depend statements. All other data used by the two loops could have been declared as
well but the system would have ignored them, as there are no true dependences on any other data.
To define the cross-loop dependence, we declare the scheduling policy of the two loops as cross
and in the depend clause we add the indexes of the continuous dependent iterations. Note that
the CHUNK in the schedule clause must be the same number as the end-index of the dependences,
so that consecutive dependent iterations are packed to the same task. Summarizing, the example
shows that each loop consists of tasks with chunk size of two iterations per task, and every task of
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Fig. 4. Cross-loop Iteration Dependences example and diagram. This example is part of a larger synthetic

application that is based on a differential equation kernel (RK4, presented in Section 6). The Data-flow graph

of the entire application is shown in Figure 1.

Loop A has a direct dependence on the corresponding task of Loop B. Finally, we explicitly specify
that only five threads will be used to execute the tasks of each loop. Thus, the two loops split the
available resources of the parallel region (10 threads) to execute their tasks in parallel.

5 THE TRANSLATOR

The translation of a directive-based application to a SWITCHES parallel program is automatically
done by a source-to-source tool called the Translator. The Translator is a software tool built using
Lex and Yacc that parses the C/C++ directive-based code and produces threaded parallel code.
Pragma directives can be inserted anywhere in the code and also in multiple files. The Translator

also produces error and warning messages when directives or clauses are not used correctly. Such
messages include directive syntax errors, unknown parameters in clauses, mismatching resource
allocation values, among others.

The Translator takes four major inputs from the programmer: (1) the source code files, embedded
with pragma directives, (2) the scheduling policy, which defines how tasks are divided to participat-
ing software threads, (3) the assignment policy, which denotes how software threads are assigned
to hardware resources, and (4) the number of threads, which execute the application. The number
of software threads can be as many the Operating System (OS) allows. After parsing the directives
in the source code, it automatically extracts the tasks and their dependences and produces the
synchronization graph of the application. It then executes a transitive reduction operation on the
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Fig. 5. SWITCHES assignment policies. Fig. 6. The process of translating an application.

graph to remove redundant dependences that might have been implicitly or explicitly declared [2].
This optimization reduces the size of the graph and the runtime data structures that are produced,
thus reducing the workload of the scheduler and minimizing runtime overheads.

To further reduce runtime overheads compared to other dynamic parallel systems, many of the
scheduling operations in SWITCHES are moved to compile-time and executed by the Translator.
The Translator will use the final graph to impose the scheduling and assignment policies by stat-
ically mapping tasks to threads and threads to cores, respectively. At the moment, SWITCHES

schedules tasks based on the availability of the threads using a round-robin scheme. During the
program translation the user can choose from three predefined assignment policies: Compact and
Scatter that can also be found in the icc compiler as affinity policies (KMP_AFFINITY) or the gcc

compiler with the names close and spread. The third and new assignment policy is called Hybrid
as it implements a combination of the previous two. We present each policy in the example of
Figure 5 where we assume a system with three cores and three hardware threads per core. The
Compact policy assigns software threads close to each other occupying the hardware thread units
of a core before moving to the next one. This policy does not utilize all cores when the software
threads are less than the hardware threads of a system. To evenly utilize all available cores, the
Scatter policy assigns the software threads to the cores in a round-robin way. The Hybrid pol-
icy is a combination of the two previous, where Scatter is used when the software threads are
fewer than the number of the available cores to increase processor utilization, while Compact is
used when the number of threads is more than the available cores to favor locality of shared data
in the caches. The Hybrid policy is implemented for simplicity of the execution of the Transla-

tor. Depending on the number of threads defined by the user at the translation stage, the system
automatically determines the appropriate policy to use. All policies use the software thread-id to
assign the threads to the cores.

After invoking the Scheduler it creates the output parallel source code as shown in Figure 6. It
can also generate a fully detailed synchronization graph for possible debugging of the application.
The produced source files consist of the tasks code, the creation of the software threads (pthreads),
and the SWITCHES runtime system. The output source code can be compiled with any commodity
C/C++ compiler.

6 EXPERIMENTAL SETUP

SWITCHES is evaluated on a set of seven data- and task-parallel applications. Applications were
chosen based on references from other evaluations of task-based runtime systems and many-core
processors ([12, 16, 38, 42, 44]). Details for all the applications and their input sizes are shown in
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Table 2. Experimental Workloads Description and Dataset Sizes

Dataset Sizes

(Computation Iterations)

Benchmark Description DS1 DS2 DS3

Q12 Nested-Loop Join from
TPC-H [7]

60K · 1.5K 60K · 15K 600K · 150K

MMULT Matrix multiply [42] 256 · 256 512 · 512 1,024 · 1,024
RK4 Differential equation [42] 4,800 9,600 19,200
SU3 Wilson Dirac equation [12] 1,920K 3,840K 7,680K

Poisson2D Five-point 2D stencil
computation [44]

4,096 8,192 16,384

SparseLU LU factorization of sparse
matrices [16]

120 · 32 240 · 32 480 · 32

OCEAN Red-Black solution
(Gauss-Seidel [47])

4,096 · 4,096 8,192 · 8,192 16,384 · 16,384

Table 2. The Dataset Sizes represent the total number of computation iterations each application
executes on its data.

As representatives of data-parallel applications, we use (1) Q12, a C-code version of Query 12
from the TPC-H Benchmark suite [7] that emulates the Scan and Join operations on the data from
two tables representing a memory-bound application, (2) MMULT, which implements a matrix
multiplication algorithm [42], (3) RK4, which solves a differential equation [42], and (4) SU3, which
is a component of the Wilson Dirac equation that involves the multiplication with the gauge-links
(vector multiplication of complex C99 numbers) [12].

Task-parallel applications include (1) Poisson2D, a five-point 2D stencil computational kernel
of the Poisson equation from the KASTORS Benchmark suite [44], (2) SparseLU, from the BOTS
Benchmark suite [16] that computes an LU matrix factorization using sparse matrices creating
an imbalance workload, and (3) OCEAN, representing a Red-Black solution of the Gauss-Seidel
method [47].

Our main evaluation platform is an Intel Xeon Phi 7120P with 61 cores and 4 threads per core
(totaling 244 hardware threads). Note that we only used 60 cores so as to avoid any interference
by the OS that always uses the last core of the system. This board has a total of 16GB of main
memory and runs at 1.238GHz. To cross-compile applications for the Xeon Phi we use the Intel
icc v.17.0.2 compiler (and the corresponding libiomp5 library) with the -mmic flag indicating the
Many Integrated Architecture (MIC) target. We also tested SWITCHES on a smaller system, a 12-
core machine with two 6-core (12 hardware threads) AMD Opteron 2427 running at 2.2GHz with
an available main memory of 31GB. This system is running an Ubuntu SMP ×86-64 OS with the
gcc v.5.4 compiler (with libgomp1 v.6.2). For both compilers, we use the -O3 optimization flag. The
results are presented as Speedup, calculated by dividing the execution time of the best sequential
implementation of each application with the time of the parallel execution. The execution times
are collected using the gettimeofday system call that provides a resolution of microseconds. The
time is measured from the start of the first parallel function until the last, including all runtime
costs (such as thread creation and scheduler initialization). Execution time is determined by the
arithmetic average of five consecutive execution runs after removing the outliers (for all experi-
ments, the standard deviation is within 5%).
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7 EXPERIMENTAL EVALUATION

The main objectives of the evaluation are (1) to show the performance scalability achieved by
SWITCHES, and (2) to compare it with the state-of-the-art OpenMP. The OpenMP applications used
in the evaluation are the original source codes taken from the suites described in Table 2. In BOTS
suite, SparseLU is implemented with both the parallel_for and the omp_single directives for
creating tasks. In our tests, we used the omp_single version because it makes the implementation
purely task-based and identical to the scenarios tested in KASTORS [44]. In order to provide a fair
comparison of the two runtime systems, OpenMP source codes were used as is for the SWITCHES

evaluation without extra optimizations. Only the syntax of the directives for the scenarios with
cross-loop dependences were modified since OpenMP currently does not support it.

As far as Xeon Phi-specific optimizations, only SU(3) uses vector intrinsics for both implementa-
tions as it was the only application that already supported it. Because we are studying performance
scalability of the runtimes on a large-scale many-core and not the capabilities of the underlying
hardware, we chose not to alter the original source codes with hardware-specific optimizations.
Scalability results for each application are for the largest dataset. For granularity, we used the value
that produces the highest speedup for each application. The input size is defined in the title and
the granularity for each runtime tested is shown in parentheses in the key-legend of each chart. In
Section 7.4, we show how each system performs for each dataset by presenting results of a weak
scaling test. SWITCHES results are taken using the hybrid assignment policy to increase resource
utilization when the number of threads is less than the number of available cores (60).

7.1 Data-Parallel Application

Data-parallel applications (Q12, MMULT, RK4, and SU3) are compared against the OpenMP
parallel-for using both static and dynamic scheduling policies (Static-For and Dynamic-For,
respectively). For the scenarios using the dynamic policy, we let the runtime system dynamically
decide all scheduling options, therefore granularity is not statically changed. The applications are
also implemented using OpenMP tasks (Task). Note that the version of the OpenMP library used at
the time of this work still does not support the OpenMP v4.5 (that includes the taskloop directive),
therefore to support higher granularities in OpenMP we manually implemented the taskloop sce-
narios (Taskloop) using the taskgroup directive, as suggested by the Red Hat Developer Program
in [40]. Next to the name of each system in the charts we show in parentheses the granularity level
used to achieve the highest performance for the specific system.

Results in Figure 7 show Q12 as an application that benefits more from a task-based runtime sys-
tem. A task-based implementation provides isolation to the execution of each task, and therefore
allows better scheduling of the Q12 workload as the tasks execute independently. Both SWITCHES

and OpenMP (Taskloop) achieve the highest speedup for 240 threads (72× and 67×, respectively)
but only in the scenarios where the granularity of tasks is increased. The rest of the OpenMP
implementations achieve a maximum speedup at only 180 threads. The work distribution at 240
threads is too fine-grain to hide the runtime overheads of these implementations, while the light-
weight runtime of SWITCHES achieves the highest performance at 240 threads. Oversubscribing
the Xeon Phi to 300 and 360 threads results in degraded performance as it can cause higher resource
contention and pipeline latencies [33].

MMULT in Figure 8 shows that different OpenMP implementations achieve the same perfor-
mance. Also, increasing the number of threads from 180 to 240 results in little benefit for OpenMP.
The size of the work assigned to each thread decreases as we increase the number of threads,
creating fine-grain parallelism, with the overhead of the OpenMP runtime dominating the exe-
cution. The low overhead imposed by SWITCHES allows scalability regardless of the number of
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Fig. 7. Q12 speedup on the Xeon Phi. Fig. 8. MMULT speedup on the Xeon Phi.

Fig. 9. RK4 speedup on the Xeon Phi. Fig. 10. SU3 speedup on the Xeon Phi.

threads and benefits compared to OpenMP as the number of threads increases. SWITCHES achieves
a speedup of 141×, while the best OpenMP results is 103× for Static-For. Again, oversubscribing
the cores reduces the speedup due to overheads imposed due to resource contention.

RK4 (results in Figure 9) is a load-balanced application where each iteration of the containing
loops produces the same amount of work. Its algorithm suggests that consecutive iterations use
data from consecutive memory locations. Therefore, the best results are produced with the im-
plementations that increase the granularity to favor locality (Static-For (79×), Taskloop (66×), and
SWITCHES (92×)). The Task and Dynamic-For implementations are limited to a maximum of 15×
and 10× speedup, respectively, because the runtime does not take into account the data-locality of
adjacent tasks. Because each task in RK4 uses different data for its computations, oversubscribing
of the cores could hide memory latencies and increase the performance and that is why we see the
SWITCHES performance improve after 240 threads.

SU3 is another application where we observe the impact of the runtime system on its execution
(Figure 10). Although the algorithm implemented limits the scalability of all systems to 120 threads,
the low overhead of SWITCHES to the execution allows it to achieve a speedup of 81× compared
to the best OpenMP result of 57× (Dynamic-For). In SU3, we also see a large drop of performance
when we increase the number of threads to more than 240, in contrast to SWITCHES that maintains
steady performance.

7.2 Task-Parallel Applications

SparseLU, OCEAN, and Poisson2D are compared against OpenMP task-based implementations
with dependences (Task-Dep), and without dependences (Task and Taskloop). The latter require
explicit declaration of synchronization between parallel loops as dependences are not declared.
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Fig. 11. SparseLU speedup on the Xeon Phi. Fig. 12. OCEAN speedup on the Xeon Phi.

Fig. 13. Poisson2D speedup on the Xeon Phi.

SparseLU is an application that provides cross-loop parallelism between three loops that can be
expressed using tasks with dependences. But, results in Figure 11 show that if we apply depen-
dences on OpenMP tasks (Task-Dep), the parallelism offered cannot produce enough performance
to overcome the overhead of runtime dependence resolution. When dependences are declared in
OpenMP, shared data are packed in a single dependence graph and marked for monitoring during
execution. This monitoring is managed by a centralized runtime system with its workload increas-
ing as the amount of data to monitor is increased. If we remove the dependences, this overhead
is removed but parallelism across loops is not exposed and potential performance is lost. Because
SWITCHES takes care of the dependences and the scheduling during compilation, it is possible to
expose parallelism across loops without incurring additional runtime overheads and increase the
performance over all OpenMP implementations, achieving a speedup of 80× compared to the 66×
of Taskloop. Oversubscribing cores in SparseLU helps SWITCHES to improve performance beyond
240 threads, while for OpenMP the performance degrades as it happens in RK4.

OCEAN (Figure 12) has a very balanced workload and using dependences exposes even more
parallelism. But the large number of dependences in the algorithm produce too much overhead
for the OpenMP runtime to handle efficiently. The static and distributed nature of SWITCHES de-
pendence resolution avoids the extra overhead and produces a speedup of 55× for 120 threads.
Increasing the granularity of tasks benefits the execution even more and the speedup of Taskloop

increases to 34× compared to Tasks’ 31×. The algorithm of Poisson2D (Figure 13) shows a scala-
bility limitation and the maximum speedup is achieved at 32 threads (11× for SWITCHES and 9×
for Taskloop). SWITCHES also seems to be losing performance as the number of threads increase
beyond that point, while OpenMP maintains steady results. The reason for this is that the work-
load of Poisson2D is not well balanced by the algorithm, therefore a static implementation such as
SWITCHES is bound to lose performance. On the other hand, the dynamic scheduler of OpenMP
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Fig. 14. Performance when using the cross-loop dependence support in combination with increasing gran-

ularity and allocation of resources (50:50 means the threads are equally divided between the two loops).

can handle the load imbalance at runtime and maintain the higher performance. To address the
issue of load balance in SWITCHES we used explicit allocation of resources for the two parallel
taskloops of Poisson2D as shown in Section 7.3.

7.3 Explicit Task Resource Allocation

As explained in Section 4.3, one way to solve the low-utilization problem of an application when
using a static scheduling runtime system is to explicitly allocate resources for tasks. Figure 14
highlights the benefit this technique in combination with the cross-loop dependences and variable
granularity introduced by SWITCHES (results in Figure 13 also make use of all these techniques).
When we increase the granularity to four iterations per task and at the same time split the resources
(threads) among the two loops of the application, the maximum speedup of Poisson2D is increased
by almost 24%. SWITCHES unveils the cross-loop parallelism and the splitting of the resources
allows for better allocation of the hardware resources as the two loops execute simultaneously.
This technique also helps to use the resources more efficiently during the execution, especially in
applications with scaling limitations such as Poisson2D that do not scale beyond 32 threads.

7.4 Discussion

Figure 15 summarizes all results on the Intel Xeon Phi by showing the highest achieved speedup for
each application for all OpenMP policies and SWITCHES. In Table 3, we show the execution times
of each of these scenarios. To examine the behavior of SWITCHES on a smaller system we run the
same workloads on an AMD 12-core Opteron processor and present the highest achieved speedups
in Figure 16. Overall, the results show that SWITCHES is on par with OpenMP for most applications
on the AMD system with a small loss of around 10% on two of them but an average increase of
11%. When the applications are scaled to a larger system, SWITCHES surpasses OpenMP for all
applications, achieving an average of 32% performance increase compared to the best OpenMP
results. Results for SU3 on the AMD system are not presented as the implementation used had
Intel-specific intrinsics for the Xeon Phi processor. Even though we do not show in these charts,
for SparseLU, which is an application from the BOTS benchmark suite [16], we also compared
SWITCHES against OmpSs. OmpSs showed performance that is on par with OpenMP on both
hardware systems and thus the same conclusions drawn for OpenMP are also valid for OmpSs.

In Figures 17 and 18, we present results from a weak scaling analysis of SWITCHES compared to
all other OpenMP implementations described earlier. In a weak scaling scenario, we test how the
runtime systems behave when varying the data input with a fixed number of resources. In these
tests, we used the maximum hardware available resources (240 threads) for all applications except
Poisson2D where we used the number of threads that achieves the highest performance (which is
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Fig. 15. Best speedup achieved by each system

in the Intel Xeon Phi.

Fig. 16. Best speedup achieved by each system

on the AMD Opteron.

Table 3. The Execution Time of Each Scenario that Achieves the Highest Speedup Result. The Input

Sizes for All Applications are Those of Previous Scenarios Except for SparseLU on the AMD

Which We Used a Size of (96 · 64)

System Application Serial SWITCHES System Application Serial SWITCHES

PHI

Q12 373.35s 5.18s

AMD

Q12 398.15s 125.21s

MMULT 78.17s 0.55s MMULT 10.74s 1.61s

RK4 32.27s 0.34s RK4 5.78s 1.30s

SU3 3.59s 0.048s - - -

SparseLU 6798.37s 84.53s SparseLU 40.12s 4.16s

OCEAN 14.57s 0.26s OCEAN 3.88s 0.71s

Poisson2D 12.14s 1.07s Poisson2D 4.36s 1.65s

32 threads). We used three different data sizes to monitor the behavior. In general, we notice that for
most applications OpenMP closes the performance gap with SWITCHES as the data size increases.
This happens because with larger data sizes the work per task increases compared to the work of
the runtime system. Consequently, OpenMP manages to hide its runtime overheads within the ap-
plication computation. Looking at the results from the opposite perspective, reducing the data size
should expose the runtime system operations and make them more prone to overheads. This hap-
pens to OpenMP but not to SWITCHES due to its low-overhead runtime implementation. Another
important outcome of this study is that for Task-parallel applications with dependences between
the executing tasks, OpenMP never surpasses the performance of SWITCHES (Figure 18) as the
dependence resolution mechanism of SWITCHES performs better than that of OpenMP (Task-Dep)
and at the same time the extra parallelism produced by using task dependences keeps the perfor-
mance of SWITCHES at high levels compared to the OpenMP scenarios that do not make use of
them (Task and Taskloop).

Taking all results into account, we see that a static implementation of a Task dataflow model
produces less overheads and has little impact on the parallel execution of the tested application.
The de-centralized architecture of SWITCHES allows for performance scalability regardless of the
number of threads, while its lightweight implementation of handling dependences minimizes the
runtime overhead of resolving dependences and minimizes the negative effect on the application
execution. This is obvious in many of our results as we see applications performance when using
OpenMP in many cases to stop scaling at 180 threads as the work per task becomes too little to
hide the scheduling overheads. On the other hand, for some applications performance increases
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Fig. 17. Speedup achieved with the best configuration for each system when scaling the input size of the

Data-parallel applications with fixed resources (240 threads).

Fig. 18. Speedup achieved with the best configuration for each system when scaling the input size of the

Task-parallel applications with fixed resources (240 threads for all, except Poisson2D that achieves best

speedup results at 32 threads).

when using SWITCHES even when oversubscribing the system with more software threads than
the available hardware resources as it reduces runtime overheads.

Although a static implementation of a runtime system may not be able to efficiently handle ap-
plications that dynamically change their load, we showed alternative approaches that can be ben-
eficial for certain applications. One such approach is the explicit task resource allocation construct
that in combination with the cross-loop dependences proposed helps in hiding load imbalances or
low resource utilization.

8 RELATED WORK

The processor industry is moving closer to the development of many-cores with Intel recently
proposing the MIC Architecture [24] and launching the Xeon Phi [25], its first many-core co-
processor product for HPC systems. The Xeon Phi offers a fully cache-coherent environment across
all cores, and thus supports the most commonly used programming models for developing HPC
applications like OpenMP [8], POSIX threads [41], and Message Passing Interface (MPI) [20] with-
out the immediate need to rewrite an application. The Graphics Processing Unit (GPU) [23] is
another many-core architecture, which has been around for some time and supports parallel exe-
cution with hundreds of cores. GPUs offer large amounts of computing power with low cost but
the design of a GPU only favors regular applications with streaming computation that have little
sharing. Although today more programming models support GPU execution, sufficient skills and
knowledge of the underlying hardware are needed in order to achieve good performance. GPUs are
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special purpose hardware units that offer significant performance increase mostly to data-parallel
applications.

Several software solutions exist today that target the wide exploitation of parallelism on com-
modity general-purpose many-cores. Many of them show a renewed interest in the dataflow com-
putation approach that was pioneered in the late 1970s and 1980s [6, 21, 26, 27, 37, 45]. These past
projects demonstrated that it was feasible to express large amounts of parallelism but a significant
problem was how to throttle and schedule it efficiently. Subsequent projects show that coarsen-
ing the granularity of parallelism (from instructions to tasks) results in efficient execution. Many
hardware solutions have been proposed as well but in this related work we only focus on software
systems that use unmodified existing hardware and can be directly compared to what we propose.
In the next paragraphs we describe the basic concepts of such systems and outline their differences
compared to SWITCHES.

OmpSs [15] is a software shared-memory task-based programming model based on OpenMP [8]
and StarSs [39], which targets heterogeneous multi-cores. In contrast to SWITCHES, OmpSs is an
all-dynamic system as it resolves task dependences at runtime and at the same time dynamically as-
signs tasks to cores. Since version 3.0, OpenMP also provides support for task-based execution, and
in version 4.0 complex data dependences [44] were introduced. Some of these applications were
also used for the evaluation of SWITCHES and show a significant increase in performance com-
pared to OpenMP. Intel TBB [29] is another dynamic system that implements the task-based model
and distributes tasks to cores at runtime. TBB’s scheduler uses a task-stealing approach to dynam-
ically re-distribute tasks to available cores in order to achieve better load balancing. Although
in some applications task stealing will improve the utilization of the hardware, it will also add
runtime overheads. In SWITCHES we use an explicit resource allocation technique (described in
Section 4.3) as a static solution that provides a mechanism for efficient allocation of resources and
increases performance without incurring runtime overheads as shown in our results (Figure 14).

Swan [43] implements a unified scheduler on top of the Cilk [17] language to support recursive
and Task dataflow with more than one level of parallelism. Like the previous systems, it features
dynamic scheduling and assignment of tasks and implements shared tickets for resolving task de-
pendences. To avoid simultaneous access on shared tickets, the runtime requires atomic access and
locking protection that can become a bottleneck when scaling to larger systems. In SWITCHES we
eliminate locks by implementing a de-centralized, single-writer/multiple-readers runtime system
that provides each scheduler with its own private scheduling structures. SWARM [31] is another
dataflow system implemented for both shared and distributed memory systems. Its runtime sys-
tem is built in such a way that no hardware cache-coherence mechanism is needed but in contrast
to SWITCHES it uses a dynamic scheduling policy to assign tasks to cores.

Qthreads [46] was developed to provide a portable abstraction for lightweight thread control
and synchronization primitives. Although Qthreads is not a dataflow implementation, it has many
similarities. Qthreads is based on the Full/Empty Bits (FEBs) technique developed by the Denelcor
HEP [18] and used by the Cray XMT [1] and PIM [5, 22, 28] designs. This technique marks each
word in memory with a full or empty state, allows programs to wait for either state, and makes
the state change atomically with the word’s contents. Although this technique can be emulated in
software, it is clearly stated by the authors in [46] that without hardware support for lightweight
synchronization, FEB locks will be a bottleneck.

The Legion [4] runtime system attempts to express locality and independence of program data
and tasks using logical regions that name a set of objects (data). The programmer is responsible for
explicitly grouping these objects to regions and this requires significant source code modifications,
in contrast to SWITCHES where we employ the OpenMP directives that can be used on top of the
original sequential source code. Similarly to OmpSs, Legion also uses a dynamic detection and
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enforcement of dependences on parallel tasks that increases the work of the runtime system and
potentially increases overheads.

The Open Community Runtime (OCR) [35] is a recent effort that aims to provide a runtime
system for extreme-scale computing. Although OCR resembles some similarities with SWITCHES

(such as the shared globally unique name space without hardware cache-coherence support), it
uses a dynamically generated task graph to express parallelism that could potentially produce
significant runtime overheads (depending on the application and the hardware used). An imple-
mentation of OCR using the TBB task scheduler for the Intel Xeon Phi showed that it does not scale
that well to such a high number of threads, and significant optimizations are required in order to
achieve performance comparable to OpenMP as shown in [14].

The Codelet [49] execution model aims to develop a methodology for exploiting parallelism in
future exascale machines. A codelet is a collection of instructions that can be scheduled atomi-
cally as a unit of computation. Codelets are more fine-grained than traditional threads and can
be seen as a small chunk of work belonging to a larger task. The authors in [49] believe that the
overhead of context switching (used in traditional task-based models) is too large, therefore sys-
tem software and hardware will require significant optimizations in order to produce performance
improvements.

DDM [30] is another model that implements the dataflow concepts on tasks instead of instruc-
tions in order to minimize runtime overheads. To determine when a task is ready for execution,
DDM uses a globally shared structure called Readycount that holds the number of dependences
remaining unresolved from each task. A Readycount value needs to be explicitly protected for si-
multaneous access using locking primitives and it requires more complex and larger data structures
to implement as it grows as a value, depending on the number of tasks and their dependences. In
contrast, the ON/OFF structures used in SWITCHES follow the single-writer/multiple-readers model
that requires no locking and the smallest data structure in a system is sufficient for its implemen-
tation. Different software and hardware implementations have been proposed in [3, 34, 42] that
target multi-core systems but all use a centralized scheduling unit that dynamically schedules par-
allel tasks while burdening the programmer with the responsibility of assigning tasks to cores
manually.

All these solutions are software implementations for shared-memory systems with each one
providing a task-based runtime that dynamically schedules parallel tasks to processor cores based
on data availability. Each system also comes with its own programming interface that requires
extra effort from the programmer and all except for SWARM and OCR require the support of
hardware cache-coherence in order to provide correct execution. With SWITCHES we propose a
new Task dataflow runtime system that reduces overheads during execution and removes all bot-
tlenecks that can limit its scalability to hundreds or more cores. More specifically, our work differs
from other solutions in the following ways: (1) we implement a distributed triggering system that
avoids all synchronization primitives, such as locks and barriers; (2) we implement static scheduler
that minimizes runtime overheads; (3) we require no hardware support for cache-coherence that
provides for portability of the implementation in future processors that may not support hard-
ware cache-coherence (also shown in a previous work [13]); and (4) we maintain programming
productivity by extending a widely used programming API (OpenMP v4.5 [36]).

9 CONCLUSIONS

In this work, we present SWITCHES, a lightweight scalable runtime system that uses the dataflow
paradigm to schedule parallel tasks in many-core systems. In large-scale systems where the num-
ber of cores keeps increasing, it is important to improve performance that comes from parallelism.
To achieve this, SWITCHES implements a fully distributed scheduler that uses static scheduling
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policies and produces smaller runtime overheads. It therefore allows for finer-grain tasks to be
implemented as a means to increase the parallelism exposed without losing performance.

SWITCHES also incorporates a source-to-source tool that produces parallel code from a sequen-
tial application embedded with OpenMP v4.5 API directives. It automatically produces the dataflow
graph with the tasks and their dependences and statically schedules the tasks to the available ex-
ecution units. Its execution model supports variable-granularity loop tasks that, combined with
cross-loop iterations dependences and explicit resource allocation techniques, increases the ex-
ploitable parallelism, takes advantage of the data-locality in loop tasks and efficiently allocates
hardware resources. Without affecting programming productivity, SWITCHES achieves significant
performance benefits (an average of 32%) on the many-core system tested, compared to the state-
of-the-art OpenMP implementation.
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