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Περίληψη

Η αύξηση της επίδοσης με ταυτόχρονη μείωση της κατανάλωσης ενέργειας επιτυγχάνε-

ται με την παράλληλη επεξεργασία. Προκειμένου να αξιοποιηθεί ο παραλληλισμός μέσα

από τις εφαρμογές και να βελτιστοποιηθεί η ενεργειακή απόδοση μεγάλων συστημάτων,

η τάση είναι να αυξάνωνται οι πυρήνες μέσα στους επεξεργαστές. Ωστόσο, η αύξηση

του αριθμού των πυρήνων από μόνη της δεν έχει ως αποτέλεσμα την βελτιωμένη επίδο-

ση των εφαρμογών. Από την άποψη του λογισμικού, αυτό δημιουργεί νέες προκλήσεις

καθώς χρειαζόμαστε ένα πλαίσιο που να μπορεί να εκμεταλλεύεται αποτελεσματικά τον

παραλληλισμό των εφαρμογών στους διαθέσιμους πόρους που προσφέρει το υλικού.

Η αύξηση της επίδοσης στα μελλοντικά συστήματα πολλαπλών πυρήνων θα επηρεα-

στεί από τους ακόλουθους παράγοντες: τον βαθμό παραλληλισμού στις εφαρμογές, τον

τρόπο προγραμματισμού, τα χαμηλού κόστους συστήματα εκτέλεσης, την εκτέλεση των

εργασιών με γνώμονα την τοποθεσία των δεδομένων, την αποτελεσματική χρήση των

διαθέσιμων πόρων και τα επεκτάσιμα σχέδια αρχιτεκτονικής επεξεργαστών.

Σε αυτήν την Διατριβή, το μοντέλο εργασιών (Task model) χρησιμοποιείται ως υ-

λοποίηση του μοντέλου ροής δεδομένων (Data-flow). Το μοντέλο ροης δεδομένων είναι

το καταλληλότερο μοντέλο για την εκμετάλλευση μεγάλων ποσοτήτων παραλληλισμού,

ενώ η υλοποίηση με τη χρήση εργασιών μειώνει το κόστος της εκτέλεσης και προσαρ-

μόζεται εύκολα σε διαφορετικές εφαρμογές. Σε αυτή τη εργασία, η Συναλλακτική Μνήμη

(Transactional Memory) ενσωματώνεται στο μοντελο ροής δεδομένων για να μειώσει την

αυστηρότητα του, διερευνώντας τον εικαστικό παραλληλισμό όταν οι εξαρτήσεις μεταξύ

εργασίων είναι πολύ περίπλοκες για να εφαρμοστούν ή ακόμα και όταν δεν ισχύουν.

Αυτή η Διατριβή παρουσιάζει την πρώτη εφαρμογή σε μεγάλους πολυ-επεξεργαστές
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του μοντέλου πολλαπλών σπειρωμάτων (DDM), μια υλοποίηση του μοντέλου ροής δεδο-

μένων. Το μοντελο πολλαπλών σπειρωμάτων επανασχεδιάζεται για να υποστηρίξει τον

πρώτο επεξεργαστή πολλαπλών πυρήνων από την Intel(Single-chip Cloud Computer)

που παρέχει ένα ενιαίο χώρο διευθύνσεων χωρίς υποστήριξη υλικού για συνεκτικότητα

της κρυφής μνήμης (cache). Τα αποτελέσματα αυτής της εργασίας οδήγησαν στο σχε-

διασμό και την ανάπτυξη ενός νέου πιο αποδοτικού, συστήματος εκτέλεσης που μπορεί

να επεκταθεί σε ακόμα μεγαλύτερους επεξεργαστές.

Το προτεινόμενο σύστημα (SWITCHES) περιλαμβάνεται σε μια πλατφόμρα προγραμ-

ματισμού και εκτέλεσης εφαρμογών. Το SWITCHES είναι λογισμικό που υλοποιεί το

μοντέλο ροής δεδομένων που βασίζεται σε εργασίες για επεξεργαστές πολλών πυρήνων.

Απαιτεί ενιάιο χώρο διευθύνσεων αλλά όχι απαραίτητα μηχανισμούς συνεκτικότητας της

κρυφής μνήμης που θα μπορούσαν να περιορίσουν την επεκτασιμότητα του επεξεργαστή.

Το SWITCHES υλοποιεί ένα ελαφρύ στατικό κατανεμημένο σύστημα ενεργοποίησης για

την επίλυση εξαρτήσεων κατά τη διάρκεια εκτέλεσης εργασιών. Υποστηρίζει μηχανισμο-

ύς κατανομής των πόρων του συστήματος και ενσωματώνει τεχνικές εκμάθησης μηχανών

(machine-learning) για την αποτελεσματική αξιοποίηση τους. Για τη εύκολη υλοποίηση

προγραμμάτων, το πλαίσιο υλοποιεί το πιο πρόσφατο πρότυπο από το (OpenMP) (ν4.5)

και το επεκτείνει για να υποστηρίζει εργασίες σε βρόχους με εξαρτήσεις σε διαφορετικούς

βρόχους. Παρέχει ένα εργαλείο (Translator) που παράγει αυτόματα κώδικα βασισμένο

σε νήματα, ο οποίος μπορεί να μεταγλωττιστεί από οποιονδήποτε μεταγλωττιστή C/C++,

εφαρμόζοντας όλες τις υπάρχουσες βελτιστοποιήσεις.

Χρησιμοποιώντας το σύστημα αυτό, η επίδοση εφαρμογών με διαφορετικά χαρακτηρι-

στικα σε μια μηχανή με Intel Xeon Phi επεξεργαστή ξεπερνά την επίδοση του OpenMP

κατά μέσο όρο κατά 32% και βελτιώνει την αποδοτικότητα της πετυχαίνωντας μέγιστη

επίδοση χρησιμοποιώντας 30% λιγότερους πυρήνες σε εφαρμογές με σύνθετες εξαρτήσεις.
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Abstract

Power-performance efficiency in High Performance Computing (HPC) systems is

currently achieved by exploring parallel processing. Consequently, in order to ex-

ploit application parallelism and optimize energy efficiency, the trend is to include

more cores in the processors. From the hardware perspective, many small and sim-

ple cores will be added in processor architectures, leading towards many-core chips

with hundreds of cores. Nevertheless, scaling the number of cores alone does not

result in improved application performance. From the software perspective, this cre-

ates new challenges as we need a framework that can efficiently exploit application

parallelism on the available hardware resources.

Overall, performance scalability in future many-core systems will be affected

by the following factors: the degree of parallelism, programmability, low-overhead

runtime systems, locality-aware execution, efficient use of the available resources

and scalable architecture designs.

In this thesis, the Task model is used as an implementation of the Data-flow

paradigm. Data-flow is the most appropriate model for exploiting large amounts of

software parallelism, while a task-based implementation reduces runtime overheads

and easily adapts to different applications. In this work, Transactional Memory is

integrated in Data-flow to reduce the strictness of the latter by exploring speculative

parallelism when task dependences are too complex to apply or even when not

applicable.

This thesis presents the first many-core implementation of the Data-Driven

Multi-threading (DDM) model, a task-based implementation of Data-flow. DDM
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is redesigned to support the first single-chip many-core processor from Intel (the

Single-chip Cloud Computer) that provides a single address space with no hard-

ware support for cache-coherence. The results from this work led to the design and

development of a new more efficient, lightweight runtime system that is able to scale

to larger many-core processors.

The proposed runtime system (called SWITCHES) is included in a complete pro-

gramming and execution framework. SWITCHES is a software implementation of

the task-based Data-flow model for many-core processors. It requires global address

space but not necessarily a hardware cache-coherence mechanisms that could limit

the scalability of the architecture. SWITCHES implements a lightweight distributed

triggering system for runtime task dependence resolution and uses static schedul-

ing and compile time assignment policies to reduce overheads. It supports explicit

task resource allocation mechanisms and incorporates machine-learning techniques

within the framework to efficiently utilize the underlying resources. To maintain

high-levels of programming productivity, the framework implements the latest API

standard from OpenMP (v4.5) and extends it to support variable granularity loop-

tasks with dependences across different loops as to favor data-locality in loops with

inter-dependences. It provides a source-to-source tool that automatically produces

thread-based code that can be compiled by any off-the-shelf C/C++ compiler, apply-

ing all existing optimizations.

Performance evaluation of applications with different characteristics on an Intel

Xeon Phi system shows good scalability that surpasses the state-of-the-art by an

average of 32% and resource utilization is increased with maximum performance

achieved using 30% fewer cores for applications with complex dependences.
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Chapter 1
Introduction

Improving application performance in an efficient and effective way is a joint task

between both the hardware and the software. Performance scaling is determined by

a combination of the following factors: the degree of parallelism, programmability,

low-overhead runtime systems, locality-aware execution, efficient use of the avail-

able resources and scalable architecture designs. In this thesis we focus on the Task

Data-flow model as the most appropriate for exploiting large amounts of parallelism

and explore ways to address the above mentioned factors in order to scale applica-

tion performance on commodity hardware, from conventional multi-cores to future

many-cores with hundreds of cores. Our efforts brought the implementation of par-

allel programming and execution platform that is publicly available for download

in [1].

1.1 Motivation

Performance improvement is the principal driver in High Performance Computing

(HPC). This improvement was achieved by increasingly adding more nodes to the

large-scale systems. Nevertheless, as suggested by M. Resch [2], the number of

nodes in future exascale systems may not change dramatically compared to those of

today because of the prohibitive cost. It is the number of cores in a single node that

will increase with the use of single-chip many-core processors leading to large-scale

HPC machines with millions of processing units. Most HPC facilities today use

many-core processors such as the Graphic Processing Units (GPUs) [3] and the Intel

Many Integrated Core (MIC) processors [4] as to achieve high-performance within

a certain power budget. Nevertheless, programing a million units is an extremely
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difficult task as can be seen in HPC centers today. Message-passing models are most

commonly used but they will become a bottleneck for intra-node performance as they

are designed for only a few thousands of processing units and their programming is

already a challenging task. Therefore, new parallel programming frameworks and

runtime systems are needed to support the future HPC large-scale machines [2].

1.2 Problem Statement

There has recently been a renewed interest in the Data-flow model as a way to

efficiently exploit large-scale parallel computation. The work in this thesis is based

on the task-based Data-flow model of execution that is the most appropriate for

exploiting large amounts of parallelism. Nevertheless, existing runtime systems

offer limited performance scalability (see Chapter 2). The main factors that affect

the scaling of application performance on large-scale many-core systems are: the

degree of parallelism, programmability, low-overhead runtime systems, locality-

aware execution, efficient use of the available resources and scalable architecture

designs. To address these factors and achieve performance that scales in the many-

core era it is essential to answer the questions presented in the following sections.

1.2.1 Application Parallelism

The Data-flow model is an asynchronous (non-blocking) model capable of exploiting

large amounts of parallelism as the execution follows the path of the data, thus a

natural paradigm for expressing parallelism. Whenever the input operands of an

instruction in a Data-flow program is produced, the instruction can be executed.

Despite the simplicity of the idea, extracting producer/consumer relationships in

applications described by complex algorithms is proven to be a difficult task, even

for highly experienced programmers. Partly, this is because of the strictness of the

model as it doesn’t allow shared state in Data-flow programs, even in cases where

this is a fundamental operation. Therefore, a different approach must be followed in

order to keep the benefits of the Data-flow model and at the same time not burden the

users with the difficult task of extracting all dependences from complex algorithms.

Research Question 1: Is it possible to relax the definition of dependences and increase

the parallelism exploited, without loosing the benefits of Data-flow?
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1.2.2 Programmability

Message-passing models that are most commonly used in HPC systems will become

a bottleneck for intra-node performance as they are designed and optimized for

large-scale distributed systems [2, 5]. But even so, programing a million units is

an impossible task as can be seen in HPC centers today [2]. Although HPC users

are highly experienced programmers, there is a lack of compelling motivation for

switching programming environments unless the performance gains are high and

the development effort is low [5]. Therefore, existing parallel execution frameworks

need to be extended for large-scale many-core systems and provide user-friendly

programming tools, already familiar to the HPC community.

Research Question 2: Is it possible to provide the programming community with

tools that can exploit large degrees of parallelism using well known language constructs

based on highly adopted environments?

1.2.3 Scalable Architectures

Shared-memory multi-core processors with powerful cores have been holding the

largest share in the HPC industry the past decade. The architectural design of such

processors is guided (among others) by its ability to produce more performance

with legacy software. Parallel processing has become the de-facto standard for

increasing application performance and in order to continue and optimize power-

performance efficiency in such systems the trend today is to include more cores in a

single processor [2]. From the hardware design perspective, many simple cores will

be added, leading towards single-chip large-scale many-core processors. But, as the

number of cores in a processor gradually increases, simpler designs must be explored

by the vendors in order to reduce hardware costs and improve energy-efficiency [6].

Therefore, lightweight cores will be included and expensive mechanisms such as

cache-coherence might be removed from future many-core designs as to allow the

scalability of the architectures to continue [7, 8].

Research Question 3: How do low-cost scalable architectures with many lightweight

cores impact runtime systems and application performance?
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1.2.4 Scalable Runtime Systems

Scaling the number of cores alone does not result in reduced execution time. From

the software perspective, many-core processors create new challenges as there is a

need for scheduling systems that can efficiently exploit parallelism without incur-

ring runtime overheads and are able to increase speedup regardless of the number

of cores. Most Data-flow runtime systems that exist today (presented in Chapter 2)

follow a centralized approach, creating a single-point of communication for parallel

tasks that will become a bottleneck on large-scale processors. A centralized runtime

implementation implies sharing of scheduling data structures that requires locking

and coherence mechanisms in order to ensure correct execution. As previously

explained in Section 1.2.3, the use of such techniques results in large performance

overheads and limits the scalability of both the software and the hardware [6]. Also,

almost all current runtime systems use dynamic scheduling that provides adapt-

ability to irregular executions, but results in large runtime overheads, especially in

applications with complex dependences on large-scale many-cores.

Research Question 4: Is it possible to develop a low-overhead runtime system that

scales regardless of the number of cores and requires minimum hardware support?

1.2.5 Efficient Utilization of Resources

It is particularly common in large-scale systems to have under-utilized hardware

resources that result in wasted performance and energy [5]. Efficiently mapping

tasks from a parallel application with irregular data access patterns and complex

dependences to a large-scale system is an extremely difficult task, even for highly

experienced programmers. A runtime system with a dynamic scheduling policy

could be a possible solution to such a problem but as explained earlier, finding a

better scheduling at runtime incurs in significant overheads that will not scale on

future many-core processors. Therefore, new scheduling techniques and tools are

needed that can utilize large number of hardware resources and provide optimized

power-performance efficiency.

Research Question 5: Is it possible to develop a tool that automatically provides

scheduling policies, able to efficiently utilize the underlying resources?
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1.3 Thesis Statement

In order to achieve application performance scalability for processors with large number of

cores (many-cores) you need to collectively address parallelism, programmability, runtime

system, resource utilization, and architecture design limitations.

1.4 Objectives and Contributions

1.4.1 Goal

The main goal of this thesis is to address the factors that affect the scalability of

application performance on large-scale many-core processors. To achieve this goal,

the task-based Data-flow model is used and in particular the Data-Driven Multi-

threading (DDM) [9] model, a higher-granularity execution model of the Data-flow

paradigm. In order to hide scheduling and communication latencies, DDM applies

dependences across threads (collection of instructions) instead of single instructions

as in the original implementations of Data-flow. To present our findings we evalu-

ate our implementations with applications from different domains that exhibit the

characteristics we want to show for each objective. The objectives and contributions

of this Thesis are stated below.

1.4.2 Objective 1: Exploit more application parallelism

To answer Research Question 1 (Section 1.2.1), the Data-flow model is to be extended to

support speculative parallelism by incorporating Transactional Memory (TM). More

precisely, explore shared mutable data by integrating transactions in Data-flow in

order to execute more tasks in parallel that would otherwise be serialized. Therefore,

further parallelism can be exploited while mutable shared state can be introduced

to the Data-flow model in a composable way.

Contribution: This work is the first software integration of transactions into

a task-based Data-flow implementation as a way to introduce shared state in the

Data-flow model. It offers software support for developing Data-flow applications

with TM support [10], while it provides an overhead analysis of the integration of

the two models [11]. More details on the implementation and results of this work

are presented in Chapter 3.
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1.4.3 Objective 2: Programmability

In order to address Research Question 2 (Section 1.2.2) and maintain high-levels of

programming productivity, a unified Data-flow platform is to be developed that will

support different DDM runtime systems and different types of hardware proces-

sors [12,13] (see Chapter 2). To provide for easy to program environments, the most

commonly used Application Programming Interface (API), the OpenMP v4.5, must

be implemented.

Contribution: This work extends the OpenMP v4.5 API to support explicit

task resource allocation mechanisms and variable loop task granularity to increase

data-locality even for loop tasks with inter-dependences. It provides a source-to-

source tool that automatically produces thread-based code that can be compiled by

any off-the-shelf C/C++ compiler, applying all existing optimizations [14]. Details

on the API supported and the extensions implemented are presented in Chapter 5.

1.4.4 Objective 3: Support for Scalable Architectures

To address Research Question 3 (Section 1.2.3), the DDM model [9], is to be ported

on the Intel Single-chip Cloud Computer (SCC) many-core system [15]. Intel SCC

is an experimental processor for many-core software development that does not

provide support for cache-coherence in order to scale the architecture design to a

large number of cores.

Contribution: The work presented in Chapter 4 is the first DDM implemen-

tation for a many-core processor [16]. It provides low-overhead software support

for shared-memory execution without requiring hardware cache-coherence mecha-

nisms as to avoid factors that can limit the scalability of the architectures [6–8].

1.4.5 Objective 4: Low-overhead Runtime

To answer Research Question 4 (Section 1.2.4) a new runtime system that implements

the task-based Data-flow model, is to be designed and developed in order to exploit

large degrees of parallelism and at the same time addresses the trade-offs of Research

Question 3 (Section 1.2.3) as to be more efficient, lightweight and scale regardless of

the number of cores used.

Contribution: This work proposes a software runtime system for many-core
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processors that supports global address space without the need for hardware cache-

coherence mechanisms [14]. It implements a lightweight distributed triggering sys-

tem for task runtime dependence resolution and uses static scheduling and compile

time assignment policies to reduce overheads. More details on the implementation

of the runtime system are presented in Chapter 5.

1.4.6 Objective 5: Efficient Utilization of resources

To address the issue of under-utilized execution presented in Research Question 5 (Sec-

tion 1.2.5), we will employ a machine-learning technique to automatically map tasks

to the underlying hardware. Using machine-learning, the scheduling policy can be

automatically optimized for execution time, power consumption, temperature or

any combination of the three. At the same time, the hardware can be utilized to

achieve maximum performance using fewer resources than what common schedul-

ing policies use.

Contribution: The main contribution of this work is the integration of a

machine-learning algorithm in a real parallel framework that produces an auto-

tuning scheduling tool for task-based parallel applications [17]. Details on the

implemented auto-tuning tool are presented in Chapter 6.
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Chapter 2
Background

The work presented in this thesis is based on the Task model, where tasks are sched-

uled in a Data-flow fashion. More precisely, we use the DDM model of execution [9]

as a baseline for this work. In the following sections the background of this work

that is related to the Data-flow model is presented along with the software runtime

systems that implement it (Section 2.1), the DDM model and its implementations to

date (Section 2.2), the TFlux Platform [18] that is the framework used as a starting

point for this work (Section 2.3) and finally software frameworks that exist today

for various HPC-based many-core systems (Section 2.5). The DDM model is also

implemented as a hardware runtime unit [18,19] but these implementations are out

of the scope of this work as we focus on a software solution that can execute on

commodity hardware.

2.1 The Data-flow Model

The original Data-flow model was proposed by Jack Dennis in the early 1970s [20,

21] as an alternative to the Control-flow (von Neumann) model. Instructions in

a Data-flow program are executed when all their input operands are available,

creating an asynchronous (non-blocking) execution. The availability of the operands

is expressed using data dependences, that define a Data-flow graph representing the

order of the execution. Using the Data-flow graph and the input operands required

by each instruction, one can expose parallelism in a program. Many systems today

try to explore fine-grain parallelism by using Data-flow-like models as a way to

achieve high performance and utilization on large-scale many-core systems with

hundreds to thousands of cores [22–25].
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The main advantage of the Data-flow model is the ability to exploit maximum

parallelism from an application by exposing fine-grain tasks. This large degree of

parallelism can be exploited to hide the latency of memory accesses. Unlike other

models, Data-flow does not require synchronization mechanisms as the correctness

of the execution is assured by enforcing the data dependences. Nevertheless, exploit-

ing fine-grain parallelism was also the limiting factor in the success of this model

in past implementations, mostly due to the overheads in enforcing the data depen-

dences at the instruction level. More recent attempts managed to overcome these

overheads by adopting the model at a coarser granularity (e.g. tasks), consequently

achieving high performance [9, 22–24].

Another relevant factor towards using Data-flow for increasingly large systems

is its disciplined access to shared data. Assuming a task-based implementation of

Data-flow, it is ensured by the model that no concurrent tasks will be modifying the

same data, as this would result in a data dependence violation [20, 21, 26]1. There-

fore, in a shared-memory system the Data-flow model doesn’t require a hardware

implementation of a cache-coherence protocol as access on shared data may be coor-

dinated by the model itself. Correctness of the application may be assured simply by

updating cached data to and from main memory on completion of a task, i.e. flush-

ing updated values to memory and invalidating cached copies in other cores. The

fact that hardware cache-coherence is not required by the Data-flow model, allows

for increasing performance scalability on many-cores as shown in [16], reducing

hardware costs and improving energy-efficiency [6].

2.1.1 Data-flow Runtime Implementations

Recently, there has been renewed interest in the Data-flow approach to computation

that was pioneered in late 70s and 1980s [27–31]. These projects demonstrated that

it was feasible to express sufficiently large amounts of parallelism but a significant

problem was how to throttle and schedule it. Subsequent projects, like DDM [9],

OmpSs [22], etc. showed that coarsening granularity (from instructions to tasks)

could result in more a controllable and efficient parallel execution.

Numerical Linear Algebra (NLA) is one area where Data-flow ideas have recently

1This is according to the strict Data-flow definition while in Chapter 3 a relaxed version that uses

Transactional Memory to handle the use of shared context between tasks is explored.
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Table 2.1: Data-flow implementations on multi-cores from the literature.

Description OmpSs [22] Triggered

Instructions [32]

Serialization Sets [33] OpenDF [34]

Implementation Software Hardware Software Hardware

Scheduling Dynamic Dynamic Dynamic -

Memory Model Shared Shared Shared -

Cache-coherence Yes No Yes -

Dependences Pragma

Directives

Inserted

triggers

Writable and read-only

variables

-

Parallelism Task-based Spatial Serialization sets of

dependent operations

Data-flow

Instructions

Description DTT/CDTT [35] SEED [36] Statically

Sequential [37]

WaveScalar [38]

Implementation Software Hardware Software Hardware

Scheduling Dynamic Dynamic Dynamic Dynamic

Memory Model Shared Shared Shared Shared

Cache-coherence - - Yes Yes

Dependences Macro-based

triggers

- Functions, shared

objects, read/write

sets, sequential

segments

tokens/tags

Parallelism Data-flow Hybrid

Data-flow +

von-

Neumann

Statically

sequential

programs

Data-flow

instructions

been adopted. This is apparent in both LAPACK and BLAS functionality (PLASMA

project [39]), for sparse matrices [40]. NLA constitutes one of the main kernels for

scientific computing and their main next challenge is how to scale to petaflop-scale

high performance systems. The new generation of NLA algorithms are moving

towards expressing parallelism but leaving the scheduling to the runtime trying to

harness the available combination of resources (multi-cores, many-cores, clusters,

GPUs). It has been demonstrated that a Data-flow execution using Parallel Linear

Algebra for Scalable Multi-core Architectures (PLASMA) can easily generate millions

of tasks. Convolutional networks in computer vision [41–43] have been using GPUs

for performance exploitation but it has recently been investigated for parallelism

exploitation on single shared memory CPU machines as the task dependency graph
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implies linear speedup in within the PRAM model of parallel computation [44].

There is a clear relation between Data-flow computations and parallelization of

functional languages. Another highly prominent use of functional programming

techniques can be observed in the MapReduce frameworks [45]. Provided the map

and reduce operations are side-effect free, we can automatically parallelize their

execution using a Data-flow approach.

Tables 2.1 and 2.2 present recent work from the literature that use Data-flow

concepts in programming multi-core systems. The tables present the type of each

implementation (software or hardware), the scheduling policy used by each runtime

system, the underlying memory model, whether it requires hardware support for

cache-coherence, the way dependences are expressed and the type of parallelism

exploited in each system. We focus our attention on OmpSs [22], SWARM [24] and

Intel TBB [23], as they are the closest to the model we use and the runtime we

implement in this thesis.

OmpSs is a software task-based programming model based on the OpenMP [46]

and the StarSs [47]. Its target is heterogeneous multi-core architectures, thus it

incorporates the use of OpenCL and CUDA kernels. OmpSs outperforms OpenCL

or OpenMP in some applications for the same platforms while it offers a more flexible

programming environment to exploit multiple accelerators. The basic differences of

OmpSs with what is proposed in this work is that the dependences of the parallel

tasks are resolved at runtime and the scheduling is decided by the scheduling unit

also at runtime. OmpSs is also built as a shared memory model, thus it needs a

hardware cache-coherence mechanism in order to provide correct execution.

Intel TBB is another software implementations that uses Data-flow concepts for

scheduling parallel tasks. TBB is following a dynamic scheduling policy and is using

a task stealing approach to distribute the tasks to the available cores. The program-

ming model of TBB is using macro-statements in a C++ environment that makes the

programming non-trivial compared to other systems with the more programmer-

friendly compiler directives.

Finally, SWARM is an implementation of a Data-flow system for both shared

and distributed memory systems. It uses a dynamic scheduling policy with a run-

time system design that doesn’t require hardware support for cache-coherence. The

programming of SWARM is done using C-based macros that require from the pro-

grammer to re-write the entire application to be compatible with the runtime system
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Table 2.2: Data-flow implementations on multi-cores from the literature (cont.).

Description SWARM [24] Intel TBB [23] CnC [48] Maxeler [49]

Implementation Software Software Software Hardware

Scheduling Dynamic Dynamic Dynamic Static

Memory Model Hybrid Shared Shared -

Cache-coherence No Yes Yes -

Dependences Codelet

macros

Explicit task

dependence

macros

Input/Output

declaration

Input/Output

variables

Parallelism Codelets Concurrent

Containers

Data-flow and

Stream-processing

Data-flow,

Spatial and

Stream

of SWARM.

TERAFLUX [25] was a project funded by the European Union aiming to solve

the challenges of programmability, manageable architecture design and reliability

of a 1000+ core chips by using the Data-flow principles. The idea was to develop

new programming models, compiler analysis and optimization technologies in or-

der to build a scalable architecture based mostly on off-the-shelf components while

simplifying the design of such Tera-device systems. TERAFLUX used the TFlux plat-

form as a programming and execution system for DDM programs on the proposed

machine.

2.2 The Data-Driven Multi-threading model

DDM is a Data-flow model where the granularity of the Data-flow code is a thread

and the synchronization part of the program is separated from the communication

part as to overcome the synchronization and communication overheads imposed

by the dynamic scheduling process [9, 50] on multi-core execution. DDM programs

are composed of Data-Driven Threads (DThreads) that contain an arbitrary num-

ber of instructions. Within a DThread the instruction execution follows the classic

control-flow model, thus allowing any other runtime or compile-time optimizations

to be performed. The programming of the DDM model is done explicitly by the

programmer by defining the DThreads in a program and the dependences between

them, either by declaring a direct dependence on other DThreads or by declaring the
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Table 2.3: Data-Driven Multithreading implementations.

Description D2NOW DDMVMc DDMVMs DDMVMd DDMVMFPGA

Date Introduced 1999 2011 2011 2013 2014

Implementation Hardware Software Software Software Hardware

Scheduling Static Static and

Dynamic

Static and

Dynamic

Static Static and

Dynamic

Memory Model Distributed Distributed Shared Shared and

Distributed

Shared

Cache-coherence - No Yes Yes No

Dependences Macros Macros Directives Macros Directives

inputs and outputs of the DThreads. The dependences and the inputs/outputs form

a producer/consumer relationship between the DThreads in a program and their

combination creates the Synchronization Graph (SG) of the DDM program. The par-

allel execution of the all DThreads in a DDM program is managed by a centralized

Thread Scheduling Unit (TSU) that uses the SG in order to correctly synchronize the

firing of ready DThreads and the update of waiting DThreads.

Table 2.3 presents all DDM systems implemented to date. D2NOW [51] is a

hardware implementation for a distributed system of single-core nodes. D2NOW

is the first DDM simulated hardware distributed implementation that also incor-

porated the CacheFlow technique, a deterministic data prefetching scheme using

data-driven caching policies [52]. DDMVMc is also a DDM implementation for a

heterogeneous processor (the IBM CELL/BE). DDMVMc uses a centralized TSU that

is executed on the Power Processor Element (PPE) of the processor, while the Syn-

ergistic Processing elements (SPEs) were used for executing the application threads.

The communication between the TSU and the application threads is done explicitly

using Direct Memory Access (DMA) commands. DDMVMc was the first to imple-

ment a software version of the CacheFlow technique for moving data close to the

cores prior to their reference. DDMVMc is also the first implementation of DDM that

uses a dynamic scheduling policy for assigning the parallel threads to the cores of the

system. The same implementation was also ported to SMP processors with shared

memory and was called DDMVMs [53]. As DDMVMs is using shared memory to

store its scheduling data structures and requires hardware cache-coherence support

and simultaneous access protection mechanisms (locks) to protect the shared data

structures from simultaneous from parallel DThreads. DDMVM was implemented
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Table 2.4: TFlux DDM implementations.

Description TFluxSoft TFluxHard

Implementation Software Hardware

Scheduling Static Static

Memory Model Shared Shared

Cache-coherence Yes Yes

Dependences Directives Directives

in software for a distributed system (DDMVMd [54]) and became the first software

distributed implementation of DDM. The scheduling unit was hierarchically dis-

tributed to the nodes with one TSU instance on each participating node. To measure

the actual overheads and communication costs DDM was implemented on an FPGA

unit. DDMVMFPGA [19] is the first implementation of DDM on real hardware with

a TSU connected on the bus of the processor for communicating with the cores of

the system. DDMVMFPGA also uses shared memory for storing data but as the entire

system is implemented in hardware, no cache-coherence mechanism is needed.

2.3 The TFlux Platform

The TFlux Platform [18] is another system implementation of the DDM model that

was developed with both software (TFluxSoft) and hardware (TFluxHard) imple-

mentations for the scheduling unit. It uses the shared-memory model and follows a

static scheduling policy for assigning DThreads to the execution kernels. TFlux is the

first DDM implementation of a SMP system on commodity hardware and the first

to implement a more user-friendly programming interface with compiler pragma-

directives. As shown in Table 2.4, both TFlux implementations use static assignment

of DThreads, while they dynamically monitor dependences resolution and release

ready DThreads for execution. Both use a centralized scheduling unit and require

hardware cache-coherence in order to provide a safe execution environment.

TFlux is a complete platform that includes a programming environment for

DDM applications using compiler directives, a source-to-source preprocessor that

translates the application augmented with the directives into DDM parallel code

and a TSU that handles the Data-flow execution of the DThreads at runtime. An

important advantage of TFlux is that it is not built for a specific machine but rather
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Figure 2.1: The layered design of the TFlux system [18].

works as a virtualization platform for DDM program execution on a variety of

computing systems. Figure 2.1 shows the layered design of the TFlux system. To

abstract details of the underlying hardware, the programmer uses only the top layer

to develop DDM applications.

TFlux also requires a TSU to enforce the Data-flow execution of the DThreads.

The TSU loads the SG of a DDM application, initiates and schedules the execution

of all DThreads in a Data-flow manner, according to the dependences described by

the SG. In the first implementation of DDM, the D2NOW [9], each processor needed

to have its own private TSU since the execution nodes were independent machines.

In the TFlux implementation the TSUs were unified in a single unit named the TSU

Group. This unit is logically split in n+1 parts. One part per core (totaling n) for the

core’s own TSU operations and one common part which is located on a dedicated

core and manages the common operations of the TSU for all cores.

In addition it is necessary to define the inputs and outputs of a thread or the

producer and consumer relationships between the DThreads in order for the TFlux

preprocessor to produce the SG of the application and print the parallel source.

The TSU also manages the counters that control the firing of threads. Each time a

producer thread terminates its execution, the consumer’s counter is decremented by

one. When the counter reaches zero, all needed results have been produced and thus

the thread is ready for execution. All these operations are part of the TFlux runtime

system, which includes all data structures required to manage the thread scheduling

as well as the scheduling code itself. In TFluxHard, the TSU is implemented as a

separate unit attached to the processor, while in TFluxSoft the execution of the TSU
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Table 2.5: TFlux DDM pragma directives [55].

DDM Pragma Directives Description

#pragma ddm startprogram
Define the start and the end of a DDM program

#pragma ddm endprogram

#pragma ddm block ID Define the start and the end of a block of threads with

identifier ID#pragma ddm endblock

#pragma ddm thread ID kernel NUMBER import(VAR : FROM) export(type : VAR) Define the boundaries of a DDM thread with

identifier ID and the kernel NUMBER#pragma ddm endthread

#pragma ddm for thread ID depends(ID) Define the boundaries of a DDM loop thread with

identifier ID#pragma ddm endfor

#pragma ddm kernel NUMBER Declare the number of kernels to be used

#pragma ddm var TYPE NAME Declare a shared variable with NAME and TYPE

#pragma ddm private var TYPE NAME Declare a private variable with NAME and TYPE

is explicitly handled by one core of the multi-core system.

2.3.1 TFlux Programming Tool-chain

DDM applications in TFlux are developed using ANSI-C with pragma compiler

directives [55]. The directives are used to define the code of the DThreads and to

express the dependences between them. This section presents the programming

style for developing DDM application with TFlux. This is supported by the DDM

C Pre-Processor (DDMCPP) [55] that is included in the TFlux Platform. The main

objective of the directives is to allow the programmer to define the boundaries, the

type and the dependences of all DThreads in a DDM application.

Table 2.5 shows the most relevant directives used to write a DDM program.

A simple thread is defined by enclosing its code in a #pragma ddm thread and a

#pragma ddm endthread. These directives mark the start and the end of a thread

and also define its unique identifier. Because TFlux supports a static scheduling

technique, the programmer must also define the kernel that each thread will execute

on. The definition of loops is supported in a similar way. By enclosing the code of

a for loop in #pragma ddm for and #pragma ddm endfor directives, all iterations of

the loop will be executed in parallel. The kernel construct is not necessary in loop

threads as iterations will be evenly distributed to all participating kernels.

In order for the runtime system to know when a thread is ready for execution

a counter variable is kept that denotes the number of consumers a thread is wait-

ing upon being scheduled for execution. This counter is called readycount. For

TFlux implementations (TFluxSoft and TFluxHard) this field is not mandatory, as

the number of consumers will be automatically inferred by the declaration of the
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Table 2.6: DDMVM pragma directives extensions [13].

DDMVMs Constructs Description

kernel(SCHED POLICY:SCHED VALUE) Define the scheduling policy that the specified thread will follow

arity NUMBER Define the number of nested loops that a thread represents

readycount NUMBER Explicitly define the number of consumers of thread

update(THREAD ID:START:END) Update the ending threads’ consumers

import(address:size:flag:expression:reference variable) Define the variables that will be imported in a thread

export(address:size:flag:expression:reference variable) Define the variables that will be exported by a thread

explicit dependences.

To define the producer/consumer relationships between threads in a DDM appli-

cation the data that the threads consume and produce must be considered. Using

the import and export statements on a thread directive the preprocessor will know

which variables each thread will consume and produce. Thus, it will automatically

create a dependence between the thread that produced the declared variable and

the thread that will consume it. In some cases expressing the data dependences

through the produced and consumed data is not possible, such as arrays elements.

To explicitly define dependences between threads the depends construct is used.

This construct denotes the producers of a thread. Note that for a loop thread only

the depends statement can be used to define the producers of that loop.

Any type of thread in a DDM program must be enclosed in a DDM block at all

times. This can be done by enclosing the definitions of threads in a set of #pragma ddm

block and #pragma ddm endblock directives. Any number of blocks can be used.

The threads within a block will be executed in parallel as long as the dependences

among them allow it but blocks are strictly executed sequentially between them.

To define a complete DDM program all DDM blocks must be enclosed in a pair

of #pragma ddm startprogram and #pragma ddm endprogram directives. Finally,

before executing the preprocessor to create the DDM application, the user must also

define the number of kernels that will be used in the execution using the #pragma

ddm kernel directive.

Support for DDMVM systems

Table 2.6 shows the extensions developed in the DDMCPP [55] in order to support

the DDMVMs and the DDMVMFPGA systems. In the DDMVM implementations

the kernel parameter is a pair of numbers that defines the scheduling policy the

programmer wants to use on the specific thread and a value that might be needed,
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depending on the scheduling policy used. The kernel statement in DDMVM is also

used in a loop thread as to define the scheduling policy that the user wishes to apply

on the execution of the loop iterations. The arity parameter describes the depth of

the nested loops that are to be parallelized. Currently this is used on the declaration

of a simple thread while the user removes the for loop statements from the code and

only keeps the body of the loop. This parameter is used to expand the parallelism

to the internal loops in the case of nested loops.

In contrast to TFlux implementations, in DDMVM the user declares the con-

sumers of a thread (either simple or loop). This is done using the update statement

on the #pragma ddm endthread and the #pragma ddm endfor directives. The START

and END parameters are used to update multiple iterations of the consumer loop.

The import and export directives have the same meaning as in TFlux, with the

difference that in DDMVM you are also allowed to use expressions as to whether

you will import or export a specific variable.

More details on the DDMVMs and DDMVMFPGA runtime systems and application

examples can be found in [19, 53].

2.4 Transactional Memory

Transactional Memory (TM) [56] is a model for manipulating mutable shared data

which attempts to reduce complexity by eliminating the need for explicit synchro-

nization. It works by allowing the programmer to specify that certain sections of

a program must be executed atomically but without the need to consider any of

the synchronized control that might be required. Execution of atomic sections takes

place optimistically, that is with an assumption that any shared data within the

section will not be changed by any other concurrent execution. If such a conflict

does occur, the underlying runtime system ensures that only one execution succeeds

while others are transparently re-executed. This leads to the important property of

isolation. A thread always proceeds as though it has exclusive access to any shared

data within an atomic section. All synchronization complexity is removed and it is

unnecessary to serialize accesses to achieve correct execution. Although, in practice,

some serialization may occur due to the resolution of conflicts, the optimistic nature

of the model ensures that maximal parallelism is achieved. Although TM was orig-

inally proposed to reduce the complexity in the context of conventional threaded
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programming languages, the isolation property makes it an ideal way of introducing

mutable state into Data-flow or functional approaches.

A common example used for motivating TM illustrates the need for mutable

shared state [57]. Consider a computation which is trying to perform concurrent

credit/debits between bank accounts. Firstly, the state is fundamental to the problem.

The account balances must be globally accessible variables which can be updated

and persist. The credit/debit operations must be atomic to preserve the overall

correctness of the balances. Assuming that we do not know the identity of the

accounts when specifying the problem, it is clear that the accounts might overlap and

conflicts could occur. A conventional locking approach would need to deal with the

cases where overlap might occur by taking explicit locks and dealing with complex

interactions such as deadlock. The problem could, of course, be greatly simplified by

serializing all the operations but this would defeat the desire to exploit parallelism.

However, in many cases, there will be no overlap and an optimistic approach can

proceed with maximal parallelism. We can envisage a Data-flow solution where

threads have been generated to perform calculations on each account using a purely

functional approach and then invoking a transaction to perform a balance transfer.

Any number of such threads can be generated to operate in parallel without any

need to consider how they interact.

2.5 Many-core Hardware

The inclusion of multiple cores in the same chip has become the de-facto standard

for the processor architecture. This multi-core approach has resulted as a solution to

the power- and complexity-walls of previous monolithic single core processors. The

need to optimize performance per watt combined with the continuous advances in

technology results in an increase of the need for more cores in processor chips [15].

To retain the power-performance efficiency to an acceptable level we are currently

exploring large-scale parallel processing as the way to scale performance. Conse-

quently, in order to exploit the software parallelism and optimize the performance

per watt, the trend today is to include more cores in a single die resulting in what is

known as many-core processors [15].

Today we observe two major trends of hardware designs for general purpose

many-core processors: cache-coherent, shared-memory and distributed-memory,
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clustered architectures. Each architecture has different characteristics that target dif-

ferent application domains. There are also various parallel programming systems

today that are used to develop parallel applications, both shared- and distributed-

memory. The latter has proven to be a good solution for large clustered systems

but memory-demanding process-based execution, non-trivial message-passing pro-

gramming style and high cost for fine-grain parallelism prohibit their use on single-

chip many-core processors. Shared-memory programming systems achieve good

performance results on multi-cores but little evaluation exists on a many-core pro-

cessor. In addition, most software systems require cache-coherence to work correctly

but some works [7, 8] show that scaling hardware coherence on future many-core

processors may be an issue for performance and network traffic. It also requires a

significant amount of chip area to implement and will increase the complexity of the

hardware to levels that the time for validation is increased substantially [58].

The industry is moving closer to the development of many-core processors with

Intel proposing recently the Many Integrated Cores (MIC) Architecture [4] and intro-

ducing the 48-core SCC processor [59] as an experimental processor that adopts the

clustered architecture with simple hardware design. Intel SCC avoids the hardware-

based cache-coherence and introduces a software-oriented message passing based

architecture instead. A software cache-coherence implementation for the SCC sys-

tem can act as another potential solution for creating simpler many-core architec-

tures, free of complex hardware. As X. Zhou et al. propose in [6] Software Managed

Cache Coherence (SMCC) shows a comparable performance to hardware coherence

while offering the possibility of having dynamically reconfigurable coherence do-

mains on the chip. The unnecessary complex hardware support for applications

with little sharing and the inability to support heterogeneous platforms make the

SMCC achieve better use of silicon with significant reduction of hardware budget.

Totoni et al. in [60] use CHARM++ and MPI message passing paradigms to

implement parallel applications with different characteristics in order to evaluate the

Intel SCC processor in matters of performance. They get speedup results up to 32.7x

for 48 cores and they propose more sophisticated cores for the future many-cores in

order to increase the performance, mainly for the sequential execution. RCKMPI [61]

by Intel and SCC-MPICH [62] by RWTH Aachen University implement customized

MPI libraries aiming to improve the message passing model with respect to the SCC

many-core architecture. These two implementations use an efficient mix of Message
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Passing Buffer (MPB) and DDR3 shared memory for low-level communication in

order to achieve higher bandwidth and lower latency. In [63] the authors examine

various performance aspects of the SCC using a stream benchmark and the NAS

Parallel Benchmarks BT and LU [64]. Their findings show that for these benchmarks

the data exchange based on message passing is faster than shared memory data

exchange and in order to improve the memory access behavior you must increase

both the clock frequency of the mesh network and the memory controllers.

Xeon Phi [65] is a brand name given to a series of many-core processors designed,

manufactured, marketed, and sold by Intel, targeted at supercomputing, enterprise,

and high-end workstation markets. It incorporates more than 60 cores that can work

both as stand-alone processing unit as well as a coprocessor assisting the execution

of a multi-core host. The Xeon Phi architecture offers a fully cache-coherent environ-

ment across all cores. For this reason it supports standard programming models like

OpenMP [46], POSIX threads [66] or MPI [67] without the immediate need to rewrite

an application. It provides high performance in a low power envelope, by utiliz-

ing four-way simultaneous multi-threading cores with its 512-wide vector units. It

targets high performance computing centers with some already starting to develop

systems with multiple Xeon Phi units [68].

In addition, other types of many-core architectures exist like the Graphics Pro-

cessing Units (GPUs) [3] that have been around for some time now and support

parallel execution with hundreds of cores. GPUs offer large computing power with

low cost but the programming of such engines is not trivial and the programmer

must have sufficient programming skills and all the information of the underlying

hardware in order to achieve good performance. GPUs are special purpose hard-

ware units and the range of applications that offer significant performance increase

is limited to data parallel applications.

Several projects currently, target the exploitation of parallelism for many-core

architectures. In [69] three different programming strategies are used to test the

scalability of a many-core clustered architecture that supports both shared- and

distributed-memory (the 48-core Intel Single-chip Cloud Computer (SCC) [15, 59]).

Low-Density Parity-Check (LDPC) error correcting codes [70,71] were chosen as the

baseline applications of this research because LDPC decoding is computationally de-

manding and requires irregular access to memory which make it a suitable candidate

applications for many-core processors. LDPC codes are used today in communica-
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tion standards such as DVB-S2 and WiMAX to transmit data inside noisy channels

with high error probability. LDPC decoding is performed on the Intel SCC using

three strategies: the Distributed Parallel Decoder, the Shared Parallel Decoder and

the Parallel Multi-codeword Decoder. Results show that the distributed memory

model can’t scale due to the large number of messages exchanged by the parallel

kernels, while the shared memory model provides limited scalability due to the

overhead added by the uncacheable shared memory. On the other hand, the multi-

codeword implementation scales almost linearly achieving a relative throughput of

28 for 32 cores [69].

Another important challenge of many-core processors is memory contention and

serving the large amount of cores fast enough with data, so that performance can

be increased without delays. In another work ( [72]) we stressed the Intel SCC with

three queries from the standard DSS benchmark TPC-H [73]. To reduce memory

overheads we use a prefetching technique to bring data close the cores before they

are needed. The simplicity of the Intel SCC architecture and the absence of hardware

mechanism for cache-coherence allowed for adding more on-chip memory. This

extra on-chip memory is user-accessible and in this work was used to store data

close to the cores. Results show that depending on the complexity of the query, the

performance improvement of such scheme can reach up to 5× [72].

2.6 Many-core Software

Several software solutions exist today that target the wide exploitation of parallelism

on commodity general-purpose many-cores. Many of them show a renewed interest

in the Data-flow computation approach that was pioneered in the late 1970s and

1980s [27–31, 74]. These past projects demonstrated that it was feasible to express

large amounts of parallelism but a significant problem was how to throttle and

schedule it efficiently. Subsequent projects show that coarsening the granularity of

parallelism (from instructions to tasks) results in efficient execution. Many hardware

solutions have been proposed as well but the focus of this section is on software

systems that use unmodified existing hardware and can be directly compared to

what is proposed in this thesis.

Swan [75] implements a unified scheduler on top of the Cilk [76] language to

support recursive and Task Data-flow with more than one levels of parallelism. Like
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the previous systems, it features dynamic scheduling and assignment of tasks and

implements shared tickets for resolving task dependences. To avoid simultaneous

access on shared tickets the runtime requires atomic access and locking protection

that can become a bottleneck when scaling to larger systems. SWARM [24] is another

Data-flow system implemented for both shared and distributed memory systems. Its

runtime system is built in such a way that no hardware cache-coherence mechanism

is needed and it uses a dynamic scheduling policy to assign tasks to cores.

Qthreads [77] was developed to provide a portable abstraction for lightweight

thread control and synchronization primitives. Although Qthreads is not a Data-

flow implementation, it has many similarities. Qthreads is based on the full/empty

bits (FEBs) technique developed by the Denelcor HEP [78] and used by the Cray

XMT [79] and PIM [80–82], designs. This technique marks each word in memory

with a full or empty state, allows programs to wait for either state, and makes the

state change atomically with the word’s contents. Although this technique can be

emulated in software, it is clearly stated by the authors in [77] that without hardware

support for lightweight synchronization, FEB locks will be a bottleneck.

The Legion [83] runtime system attempts to express locality and independence

of program data and tasks using logical regions that name a set of objects (data).

The programmer is responsible for explicitly grouping these objects to regions and

this requires significant source code modifications. Similarly to OmpSs [22], Legion

also uses a dynamic detection and enforcement of dependences on parallel tasks that

increases the work of the runtime system and potentially increases overheads.

The Open Community Runtime (OCR) [84] is a recent effort that aims to provide

a runtime system for extreme-scale computing. OCR proposed a shared globally

unique name space without hardware cache coherence support and uses a dynami-

cally generated task graph to express parallelism that could potentially produce sig-

nificant runtime overheads (depending on the application and the hardware used).

An implementation of OCR using the TBB task scheduler for the Intel Xeon Phi

showed that it doesn’t scale that well to such a high number of threads and sig-

nificant optimizations are required in order to achieve performance comparable to

OpenMP as shown in [85].

The Codelet [86] execution model aims to develop a methodology for exploiting

parallelism in future exascale machines. A codelet is a collection of instructions

that can be scheduled atomically as a unit of computation. Codelets are more fine
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grained than traditional threads and can be seen as a small chunk of work belonging

to a larger task. The authors in [86] believe that the overhead of context switching

(used in traditional task-based models) is too large, therefore system software and

hardware will require significant optimizations in order to produce performance

improvements.

OpenCL [87] represents a parallel programming standard especially for heteroge-

neous computing systems. SnuCL [88] is an OpenCL framework for heterogeneous

CPU/GPU clusters that provides ease of programing for such systems. This frame-

work achieved high performance on a cluster architecture with a designated, single

host node and many compute nodes equipped with multi-core CPUs and multiple

GPUs. The scalability though refers only to medium-scale clusters, since large-scale

clusters may lead to performance degradation due to centralized task scheduling

model followed. Lee et al. in [89] presents a new OpenCL framework, this time

for homogeneous many-cores with no hardware cache-coherence, such as the Intel

SCC. The framework includes a compiler and an OpenCL runtime which together

with the dynamic memory mapping mechanism preserve coherence and consistency

between CPU cores on the SCC architecture with a small overhead.

All these solutions are software implementations for shared-memory systems

with each one providing a task-based runtime that dynamically schedules parallel

tasks to processor cores based on data availability. Each system also comes with its

own programming interface that requires extra effort from the programmer and all

except for SWARM and OCR require support of hardware cache-coherence in order

to provide correct execution. More specifically, the work described in this thesis

differs from other solutions in the following ways: (1) it implements a distributed

triggering system that avoids all synchronization primitives, such as locks and bar-

riers, (2) it implements a static scheduler that minimizes runtime overheads, (3) it

requires no hardware support for cache-coherence that provides for portability of the

implementation in future processor that may not support hardware cache-coherence

(also shown in a previous work [16]) and (4) it maintains programming productivity

by extending a widely used programming API (OpenMP v4.5 [90]).

24



Chapter 3
Speculative Parallelism in Data-flow

Data-flow is generally associated with functional styles of programming which do

not handle well shared mutable state. There have been a number of attempts to in-

troduce state into Data-flow models and functional languages but none have proved

able to maintain the simplicity and efficiency of pure Data-flow parallelism. Trans-

actional Memory is a concurrency control mechanism that simplifies sharing data

when developing parallel applications while at the same time promises to deliver

affordable performance by exploiting undiscovered parallelism. This work reports

the experience of integrating Transactional Memory and Data-flow within the TFlux

Platform. The ability of the Data-flow model to expose large amounts of parallelism

is maintained while Transactional Memory provides simplified sharing of mutable

data in those circumstances where it is important to the expression of the program.

The isolation property of transactions ensures that the exploitation of Data-flow par-

allelism is not compromised but instead is enhanced with speculatively executing

tasks in parallel that would otherwise be serialized. This work extends the TFlux

platform, a Data-Driven Multi-threading implementation, to support transactions

(DDM+TM), in a way to extend the application coverage of the Data-flow model. To

achieve this, new pragmas are proposed that allow the programmer to specify trans-

actions. In addition the runtime functionality is extended by integrating a software

transactional memory library with TFlux. To test DDM+TM, two applications are

ported that require transactional memory: Random Counter and Labyrinth an im-

plementation of Lee’s parallel routing algorithm. Results show good opportunities

for performance scalability when using the integration of the two models.
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3.1 Motivation

As technology delivers higher integration of devices into processors, the multi-core

design has become the de-facto standard for processor architecture. It promises to

deliver high performance whilst maintaining an acceptable complexity and power

budget. The trends show a continuous increase in the number of cores and it is

expected that by 2020 processors will include 1000s of cores [25]. This will lead to

new challenges, one of them being the programmability of such large-scale systems.

If their power is to be harnessed on the solution of a wide range of problems it will

be necessary to develop new parallel programming models which are both efficient

and easy to use.

There has recently been a resurgence of interest in the Data-flow model as a way to

efficiently exploit large-scale parallelism. Even though the original implementations

of Data-flow were not efficient, more recent developments have overcome this [50,91,

92]. However, the models are suited largely to the implementation of programming

styles which are essentially purely functional. Indeed it is the absence of side

effects in functional models which permits easy parallelization. Unfortunately, there

are many cases in real programs where the use of shared mutable state is either

necessary for efficiency or is a fundamental part of the problem being solved. In

these circumstances, functional approaches are unsuitable.

This limitation has long been recognized and there have been a number of at-

tempts to integrate state into both Data-flow models and functional languages. The

early work on M-structures in Id [93] added implicit locking to data items to avoid

the explicit manipulation of synchronization. However, this merely hid the com-

plexity of the synchronization rather than removed it and, in many ways, made the

writing of shared state programs more error prone. Functional languages such as

SML [94] and F# [95] have introduced mutable variables in an attempt to extend

their practicality. Unfortunately this state can rapidly destroy both the mathemati-

cal cleanliness of the language and the ability to exploit parallelism with Data-flow

like execution models. Haskell originally introduced state in a more disciplined

way by the use of MONADS [96]. However, although this enables the isolation of

state via the type system and hence preserves mathematical properties, the state ma-

nipulation is serialized and thus does not address the problems of writing parallel

programs.
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The Transactional Memory (TM) model facilitates sharing data in a manner which

isolates individual sharers from the complexities of synchronization. It was origi-

nally proposed as a way of simplifying parallel programming in conventional lan-

guages but has been shown to provide a clean and simple way to add the sharing of

state to a functional language [57]. Transactional Haskell uses the MONAD approach

to allow the expression of explicit threads within Haskell programs by defining

transactional variables which are manipulated serially within a thread but interact

in parallel across threads. It has been shown that parallel state based programs

can be specified while maintaining much of the purity of functional programming.

It is our belief that a more general and more usable programming model can be

produced by adding transactions to Data-flow using more pragmatic programming

approaches and avoiding the complexity of MONADS.

This work reports the first experience of integrating transactions into a thread

based Data-flow model. The TFlux [18] platform is used as the Data Driven Multi-

threading (DDM) implementation and TinySTM [97] for transactional support. This

merged implementation will be referred to as DDM+TM [10,11], hereafter. Through

this work additional TFlux directives are proposed for defining transactional threads

and variables. The possibility of programing applications with the combined model

and present a preliminary performance evaluation study. The overheads of the

proposed model are also analyzed through an evaluation process using a synthetic

application.

3.2 Data-flow and Transactional Memory

This Section describes the two individual parallel programming models, emphasiz-

ing on the strengths and weaknesses of each one separately. The combination of the

models as proposed in this work is also discussed.

3.2.1 Data-flow

Data-flow is known to be the model that is able to exploit the most parallelism in

an application. In the recent years it has been revisited as the solution for scaling

the performance of applications. Data-flow is a computation model that does not

follow the classical program counter model but instead relies the execution of each
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Figure 3.1: A Data-flow graph for calculating a reduction operation.

operation on the availability of its input data. Each operation can be considered as

a Data-flow node and each node can be executed independently of all other nodes.

A Data-flow program can be described using a directed acyclic graph (Data-

flow Graph), where each node represents an operation and every edge the data

dependences between nodes. Figure 3.1 shows a Data-flow graph for a reduction

operation. The first level of nodes can start execution immediately as there are no

input dependences, while the rest of the nodes must wait for their input to arrive

from previous nodes as depicted by the directed edges of the graph.

Strengths: The Data-flow model has the ability to exploit the maximum available

parallelism in an application while avoiding the high synchronization overheads and

memory latencies of other parallel implementation (e.g. locks, barriers). Data-flow

is a side-effect free model as each node depends only upon its inputs and can be

independently executed. A Data-flow program can be easily implemented as a

distributed program as the communication between nodes is explicit and done only

at the end of each nodes execution.

Weaknesses: The Data-flow model lacks the ability of providing shared state in

programs where this is a fundamental operation. To overcome this limitation it is

important to be able to provide shared mutable state in a Data-flow program. How-

ever, it is also essential that this is done without introducing explicit synchronization

in the program as this will lead to unnecessary serialization of the execution that

will eventually eliminate the Data-flow principles from the execution.
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3.2.2 Transactional Memory

Originally proposed as a way of simplifying parallel programming in conventional

languages, Transactional Memory [56] attempts to reduce complexity of manipu-

lating mutable shared data by eliminating explicit synchronization. It allows the

programmer to specify that certain sections of a program will be executed atomi-

cally, without the need of considering any synchronization control. Atomic sections

are executed fully parallel and if a conflict occurs on shared data, the underlying run-

time will ensure that only one transaction succeeds, while others are re-scheduled

for execution. Using Transactional Memory, parallel state programs can be specified

while maintaining much of the purity of functional programming.

Strengths: The atomicity offered by TM will allow concurrent access to shared

data structures, consequently allowing parallel execution of transactions that share

these data. By monitoring these data structures the TM runtime system will de-

tect any conflicts that may arise during the execution. In such a case the conflict

transactions will abort and the runtime system will reschedule them.

Weaknesses: The overheads imposed by existing software implementations of

TM are significant. These overheads come from monitoring data structures, aborting

and rescheduling conflicting transactions. Although TM is good at synchronizing

and monitoring memory access to shared data, it does not offer any mechanism

to prevent conflicts. These conflicts alone impose a large overhead as the runtime

system will need to reschedule them, thus re-executing them all over again. Some

of the overheads of a software TM implementation can be resolved when using a

hardware TM system. The focus in this work is on a software implementation as to

keep it portable, as this is a first work of combining the two models and will provide

us with a platform for debugging and experimenting with the system as much as

possible.

3.2.3 Data-flow and Transactional Memory Combined

Our proposed combined model allows both approaches to be integrated in one

system. Data-flow is used to parallelize a program at the highest degree possible,

thus retaining the Data-flow principles in a parallel application. Where shared state

is needed, or to explore even more parallelism in the parallel application, the TM

system is introduced.
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Strengths: Combining the two models results in several benefits. The strengths

of both models are retained and some of their weaknesses are minimized. Intro-

ducing mutable state improves the Data-flow model by allowing data structures

to be easily shared among Data-flow threads, without having to explicitly merge

them as you would in a purely Data-flow program. The TM model also improves

by reducing the number of conflicts. By using both Data-flow threads and transac-

tions in the same program the total number of transactions in a parallel program is

reduced. Eventually this means that the possibility of transactions to conflict will

also be reduced. Overall, this will reduce the overhead produced by a software TM

implementation. The Data-flow model cannot explore parallelism in sections that

share common data structures. Integrating transactions into the Data-flow model

adds the ability of handling shared state, thus increasing the level of parallelism that

can be explored. Data-flow threads are stateless and can be re-executed since they

have no side effects. This reduces the work that has to be done by a TM system upon

recovery in a conflict situation, by simply re-executing the conflicting Data-flow

threads.

Weaknesses: To provide mutable shared state on data structures for the Data-flow

model the shared data must be monitored from the TM runtime system. This will

provide atomicity, isolation and consistency for the shared data and the execution

itself. To do so, the data structures that are to be monitored must be specified. In the

proposed model this task is left to the programmer. To ease the programmers’ effort

though a more efficient way was implemented to express these dependences on the

shared data structures between threads as described in Section 3.3.

3.3 Proposed DDM+TM Implementation

3.3.1 TFlux System

This study uses the Data-Driven Multi-threading model and in particular its TFlux

implementation [18]. An important advantage of TFlux is that it is not build for a

specific machine but rather works as a virtualization platform for DDM program

execution on a variety of computing systems. Also, TFlux parallel source code is

in ANSI-C which complies with the supported programming languages of most

systems. More details on the TFlux Platform can be found in Chapter 2, Section 2.3.
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3.3.2 TinySTM Software Library

In order to support the transactional execution, i.e. the monitoring of the updates to

variables, the conflict detection and the restarting of the execution in case of abort,

the TFlux runtime must be extended. Rather than developing from scratch the TFlux

runtime system was extended with an existing software TM implementation. For

this purpose, TinySTM [97] was chosen as it appeared to provide a simple approach

to the integration. However, other software TM systems could be used such as

TL2 [98] or RSTM [99].

3.3.3 DDM+TM Implementation

A program in DDM+TM consists of both Data-flow threads and transactions. Each

of the two models though has it’s own runtime system for scheduling either threads

or transactions, thus when combining the two responsibilities must be set for each

runtime. For this work, the two runtime systems are kept independent from one

another but a hierarchical structure is enforced for the execution of Data-flow threads

and transactions. The TFlux runtime system (the TSU) runs on top of the TM runtime

library and is responsible only for scheduling Data-flow threads, while the TM

runtime is only responsible for aborting/committing transactions. The scheduling of

a Data-flow thread may impose the start of a transaction but the TSU will not interfere

with the monitoring of the transactions. When a transaction starts execution the TM

runtime will take over and monitor for conflicts. If such a conflict occurs, the TM

runtime will reschedule the transaction without the TSU noticing any changes. As

soon as a transaction commits and the Data-flow thread is finished, the TSU will

take over again and schedule the next ready thread.

In this first attempt at adding TM to TFlux, no changes were made to the TSU in

order to support transactional behavior. However, the possibility of offloading the

re-scheduling of an aborted transactional thread to the TSU instead of the TinySTM

system is investigated, as previous work on TM [100,101] has shown that controlling

the scheduling using information about transactions can improve the performance

and reduce wasted work due to aborts.

When adding support for transactions to TFlux an important decision concerned

the granularity of transactions. The simplest approach would be to declare a whole

thread as a transaction. With this option the system is enhanced by providing the
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Table 3.1: TFlux DDM+TM pragma directives.

DDM+TM Pragma Directives Description

#pragma ddm atomic thread ID tvar(NAME : READ/WRITE/READ WRITE) DDM+TM thread boundaries with identifier ID and the atomic variables to

monitor for either READ or WRITE#pragma ddm atomic endthread

#pragma ddm atomic for thread ID tvar(NAME : READ/WRITE/READ WRITE) DDM+TM loop thread boundaries with identifier ID and the atomic

variables to monitor for either READ or WRITE#pragma ddm atomic endfor

#pragma ddm atomic transaction tvar(NAME : READ/WRITE/READ WRITE) DDM+TM boundaries of a transaction that is smaller than a thread and the

atomic variables to monitor for either READ or WRITE#pragma ddm atomic endtransaction

#pragma ddm atomic tvar(NAME : READ/WRITE/READ WRITE) Declare an atomic variable to monitor either for READ or WRITE

#pragma ddm atomic abort Manually abort a transaction

programmer with two types of threads: pure Data-flow threads or transactional

threads. However, a thread may contain code that needs to be transactional but

combined with non-transactional code. Furthermore, it may be appropriate to spec-

ify several atomic regions within a thread. This could lead to potentially wasteful

aborts when either a transaction is only a small portion of the thread or multiple

atomic regions need to be aborted together. Therefore, support for defining the

beginning and the end of transactional sections within threads is provided.

The responsibility of finding the dependences in a Data-flow program and the

variables to be monitored in a TM program fall upon the programmer. In DDM+TM

the programmer must decide for both the dependences of Data-flow threads and

the variables to be monitored within transactions. To ease the effort of the program-

mer in developing DDM+TM programs new pragma directives are introduced that

allow the declaration of Data-flow threads along with their dependences and the

declaration of transactions with the variables to be monitored. These new TFlux

directives are presented in Table 3.1.

Another design issue is how transactional variables are identified. These vari-

ables will require that their read and write operations are observed to form the

read-set and write-set during a speculative execution of the transaction. These sets

are used to detect conflicts. For all these transactional variables the results also need

to be versioned to allow a clean restart of the transaction if necessary. One option is

to monitor every memory access that is performed within a transaction. However,

this is not necessary for unshared variables, for example those which are thread

local. Therefore, explicit declaration of transactional variables is used, as in other

TM approaches. The directive

#pragma ddm atomic tvar(NAME : READ/WRITE)

offers such functionality. Note that each transactional variable is associated within
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Table 3.2: TFlux DDM+TM pragma directives correspondence with TinySTM runtime calls.

DDM+TM Pragma Directives TinySTM runtime support

#pragma ddm atomic thread ID tvar(NAME : READ/WRITE/READ WRITE) stm init thread()

#pragma ddm atomic endthread stm exit thread()

#pragma ddm atomic for thread ID tvar(NAME : READ/WRITE/READ WRITE) stm init thread()

#pragma ddm atomic endfor stm exit thread()

#pragma ddm atomic transaction tvar(NAME : READ/WRITE/READ WRITE) sigjmp buf * e = stm start(& a) if ( e != NULL) sigsetjmp(* e, 0)

#pragma ddm atomic endtransaction stm commit()

#pragma ddm atomic tvar(NAME : READ/WRITE/READ WRITE) int temp = (int) stm load((stm word t *)&NAME) OR

stm store((stm word t *)&NAME, (stm word t *)temp)

#pragma ddm atomic abort stm abort()

a thread with a READ, WRITE or READ WRITE qualifier. This qualifier provides infor-

mation on the use of the variable within the thread which can be used by the TM

implementation to optimize the execution.

For DDM+TM, there is a complete separation between transactional and non-

transactional variables. Transactional variables must always be accessed within a

transaction. Non-transactional variables are normally private to a thread during exe-

cution and thus cannot generate conflicts. Other non-transactional threads will only

be allowed to access a non-transactional variable if the scheduling can guarantee in-

dependence. With this decision weak isolation problems are avoided. Note that by

imposing this decision the DDM is not modified in any way. DDM+TM could be im-

plemented without speculation by performing a scheduling where the transactional

variables are treated as inputs and outputs of the threads that are read and written.

This will result in the sequential execution of the code in case of threads accessing

shared data where the dependences can’t be determined prior to the execution.

Pragmas that define transactional variables within the declaration of a trans-

actional thread are also provided. This is required to support the monitoring of

variables that may have more than one alias (e.g. parameter variables inside the

code of a function). The monitoring of these variables is specified as a parameter in

the thread declaration (see Table 3.1).

As TFlux has two pragmas for declaring threads, the table contains

#pragma ddm atomic thread ID and

#pragma ddm atomic for thread ID

declaring a transactional thread and a transactional loop thread, respectively. The

tvar(NAME : READ/WRITE) extension defines the thread variables that are transac-

tional.

The last proposed directive
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#pragma ddm atomic for thread 1 tvar ( counters : READ WRITE)

for ( cv00 = 0 ; cv00 < THREADS; cv00++)

{

for ( j = 0 ; j < numOfCounters ; j ++)

indexTM [ j ] = rand ( ) % a rr a y S i z e ;

for ( j = 0 ; j < numOfCounters ; j ++)

counters [ indexTM [ j ] ]++ ;

}

#pragma ddm atomic endfor

Figure 3.2: Random Counters implementation with TFlux DDM+TM pragma directives.

#pragma ddm atomic transaction

allows the declaration of a transaction as a portion of a thread. For certain appli-

cations such as those considered in this work, this offers better performance (see

Section 3.6).

These directives are a subset of the possible ones which have been defined for

TM [56]. However, they are enough to implement the applications described in this

work and considered as the core directives. Extra transactional functionality can be

added by declaring

#pragma ddm atomic abort

in the case the programmer wants to manually abort a transaction. Table 3.2 shows

the correspondence of the proposed pragmas with the calls to the TinySTM runtime

that will automatically be generated by the preprocessor.

3.4 Workloads

For this proposal of transaction integration with the Data-flow model two appli-

cations were tested. The Random Counters and the Labyrinth implementation of

Lee’s algorithm from the STAMP Benchmark suite [102]. These were originally im-

plemented in a conventional language using TM and are not naturally Data-flow

applications. However, for this study the focus is mainly on the functionalities and

overheads of the implementation rather than the added benefits of the integration

such as exploiting implicit parallelism.
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Figure 3.3: Lee’s algorithm example.

3.4.1 Random Counters

In the Random Counters application multiple threads are used to increment the

values of random array positions. All elements of the array are created and initialized

to zero. Multiple threads are then spawned to execute loop thread code. Each loop

iteration is executed in parallel and each thread will do the same work: generate

a random sequence of numbers - that represent index positions in the array and

increment by 1 the values located in those positions. Figure 3.2 shows the code of

the implementation of this algorithm, where the

#pragma ddm atomic for and

#pragma ddm atomic endfor

directives define the DDM+TM thread boundaries, showing that all the code of the

thread is considered to be transactional. The purpose of this algorithm is to create

concurrent accesses to memory. This will in turn create memory conflicts between

threads trying to access the same memory locations. In an unsynchronized parallel

implementation this execution would create a false result.

In the DDM model this code would have to be executed sequentially since the

dependences cannot be defined prior to the execution (due to the random memory

accesses). By using TM the values of the shared variables are protected, therefore

correct parallel execution is ensured with a correct output.

3.4.2 Labyrinth implementation of Lee’s Algorithm

Lee’s Algorithm is used in the process of producing an automated interconnection

of electronic components. It guarantees to find a shortest interconnection between

two points using the Expansion-Backtracking technique shown in Figure 3.3.
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#pragma ddm atomic for thread 1

for ( cv00 = 0 ; cv00 < THREADS; cv00++)

{

#pragma ddm atomic t r a n s a c t i o n tvar ( queue : READ WRITE)

[ 1 ] Get a ( S , D) pa i r from the work queue

#pragma ddm atomic endtransac t ion

#pragma ddm atomic t r a n s a c t i o n tvar ( g l o b a l g r i d : READ)

[ 2 ] Copy globa l gr id to threads l o c a l gr ids

#pragma ddm atomic endtransac t ion

[ 3 ] Expansion stage

[ 4 ] Backtracking stage

#pragma ddm atomic t r a n s a c t i o n tvar ( g l o b a l g r i d : WRITE)

[ 5 ] Write s e l e c t e d route back to g loba l grid

#pragma ddm atomic endtransac t ion

}

#pragma ddm atomic endfor

Figure 3.4: Lee’s Algorithm pseudo-code with TFlux DDM+TM pragma directives.

Starting from the source point S, the grid points are numbered by expanding a

wavefront until the destination is reached (Figure 3.3(a)-(e)). At each phase during

the expansion stage each grid point in the wavefront marks its unnumbered neigh-

bors with an increment of its value. Once the destination D is reached, a route is

traced back to the source by following any decreasing sequence of numbered grid

points that are not used by others. Once the shortest route has been determined, the

grid points reserved for this route cannot be used by others [103].

For the purpose of this work, the Labyrinth TM implementation of Lee’s al-

gorithm from STAMP [102] was used as a guideline and ported it to DDM+TM.

Figure 3.4 presents the integration of TFlux DDM+TM pragmas into the application.

The

#pragma ddm atomic for and

#pragma ddm atomic endfor

directives are used to declare the boundaries of a DDM+TM thread. In step 1 each

thread will take a (S, D) pair from the global work queue as an atomic action. In step

2 each thread will copy the global grid to its local memory space, and in steps 3-4

each thread will execute the algorithm’s expansion and backtracking phase locally.

Finally in step 5 each thread will write the selected route back to the global grid as an

36



Table 3.3: Experimental workloads problem sizes.

Benchmark Problem size

Random Counters 10 updates 100 updates 1000 updates

Labyrinth 256x256x3-n256 256x256x5-n256 512x512x7-n512

atomic action. In order for steps 1, 2 and 5 to be executed correctly no data conflict

must be ensured on the work queue or global grid. Declaring steps 1, 2 and 5 as

transactional code with the

#pragma ddm atomic transaction and

#pragma ddm atomic end transaction

atomic execution is provided for those steps ensuring that the final result will be

correct. As for steps 3 and 4 the execution is done locally using only data local to

each thread. This does not require this part of the code to be transactional and lets

it execute in parallel within the boundaries of the thread, thus avoiding the need

to re-execute non-transactional code in the event of a conflict. This is therefore an

example where not all the code of a thread is transactional and hence need not be

declared with the transactional version of the pragma.

3.5 Experimental Setup

The integration of TM with the Data-flow model is evaluated using the Random

Counters and Lee’s algorithm described in Section 3.4. A conventional multi-

threaded TM implementation is used as a baseline for our implementations of

Random Counters for the DDM+TM version of the application. In this prelimi-

nary work the overheads of the DDM+TM model over the TM implementation is

studied rather than detailed performance. For Lee’s algorithm the Labyrinth imple-

mentation was used from [102] that uses TM calls from TinySTM and integrated

the TFlux directives to create the DDM+TM version. The results are for the parallel

DDM+TM implementation of the applications on a 12-core machine with 2 6-core

AMD Opteron(tm) Processors 2427 running at 2200MHz. The available memory of

the system is 31GB of main memory, 512KB of L2 and 6144KB of L3 cache. The

system is running an Ubuntu SMP x86-64 operating system.

The porting of the applications for the Data-flow model was performed using the
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Table 3.4: Random Counter Commits/Aborts for TM and DDM+TM implementations.

Number of Threads Commits Aborts

TM DDM+TM

2 200 38 47

4 400 157 479

8 800 920 1283

pragma directives from [55] of the TFlux Soft system [18] version 1.5.0. To integrate

the transactions in the applications the TinySTM library was used. The execution

time measurements were collected using the gettimeofday system call to measure the

execution time of the section of code that has been parallelized. The input data sizes

used for each application are depicted in Table 3.3. All the results collected are for

the Data-flow model implementing transactions over the baseline execution. The

baseline execution was considered to be the sequential execution of the applications

implementing transactions with the TinySTM library. To avoid any statistical errors

the average of 10 executions was used to produce the results, removing the largest

and the smallest execution time.

3.6 Experimental Results

3.6.1 DDM+TM Applications Evaluation

Table 3.4 shows the number of commits for executions with a different number of

threads and the average number of aborts for 10 executions for the Random Counter

application both for TM and DDM+TM implementations. For each execution the

results are different due to the use of random in the application. Since each execution

of the application is random the commits and aborts will follow a uniform random

distribution. Consequently, the results demonstrate that the integration of TM with

DDM behaves similarly to a normal TM implementation but cannot be used to

extract conclusions about detailed performance.

Figure 3.5 shows the difference in the execution time of the Labyrinth benchmark

when reducing the size of the transactional code inside a thread. From now on the

execution of a whole transactional thread will be referenced as large and the execution
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Figure 3.5: Complete vs partially transactional threads in the Labyrinth implementation.

of a part of the thread as transactional as small. On average the execution time is

smaller when only a part of the thread is declared as transactional. As the number of

threads increases, this difference is decreasing. The correlating of these results with

the numerical results of the previous executions from Table 3.5, shows that when

the number of aborts is the same for the two executions the small implementation

is faster and when the number of aborts for the small implementation exceeds the

number of aborts of the large implementation the execution times are almost the same.

This correlation concludes that the overhead of rescheduling a whole transactional

thread is higher than rescheduling a small part of the thread. This is because the

rescheduled code to be executed will be more in the former case.

Table 3.5: Labyrinth Commits/Aborts for TM and DDM+TM implementations.

Number of Threads Commits Aborts

Small Large

2 1028 18 18

4 1032 47 46

8 1040 101 99

16 1056 182 175

Finally, the experimental results that indicate the speedup for the DDM+TM

implementation of the Labyrinth application over the TM sequential implementation

are depicted in Figure 3.6. From these results it is easy to observe that for the two

smaller input files (256x256x3-n256 and 256x256x5-n256) the application scales well
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Figure 3.6: Labyrinth’s TM routing algorithm - scalability of TFlux extended with TM.

up to 10 threads and then starts degrading. For the largest input file it scales beyond

10 threads with a maximum speedup of 6.2x over the sequential implementation

with TM at 12 threads. Although these results are on a 12-core machine, the reason

for this degradation in the speedup for more than 10 threads is that the TSU and the

OS is running simultaneously with the application and occupying one core each [18].

As seen from Figure 3.6 the scalability of the DDM+TM model is good.

3.6.2 DDM+TM Overheads Analysis

To get a clear view of the integration of transactions into the Data-flow model, simple

scenarios were created to test the TM runtime system and record the overheads

produced by monitoring shared mutable data, as well as the overheads of aborting

and rescheduling conflicting transactions. Synthetic applications were created with

multiple threads that interact with shared data structures in order to record the

overheads produced.

In the first scenario a parallel application was executed that uses shared data

but will not create any conflicts during the execution. The data of this application

are shared only for read operations, so no conflicts that require aborting of parallel

transactions will arise. The purpose of this scenario is to record the overheads when

monitoring only one such shared data structure, as opposed to monitoring all the

shared data structures of the application. Monitoring a large number of shared data

structures not only requires more hardware resources (e.g. memory) but, as shown

in Figure 3.7, it also results in a large overhead in execution time. The more data
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Figure 3.8: Overheads of aborting conflicting transactions while monitoring one shared variable when

a whole Data-flow thread is declared as a transaction versus a part of a Data-flow thread to be declared

as a transaction.

structures monitored, the more work a TM runtime system will have to do during the

execution. Although there are no conflicts during the execution the runtime system

will still consume resources (mainly CPU time) in order to monitor the execution

and check for possible conflicting transactions.

In another scenario the granularity of a transaction relative to a Data-flow thread

was studied. Figure 3.8 shows the overhead produced when monitoring one shared

variable for two granularity levels. The first case considers that a whole Data-flow

thread will be transaction. This means that in case of a conflict the whole Data-flow

thread will be aborted and re-executed. The second case, declares as a transaction

only the portion of the Data-flow thread that actually uses the shared data structure

for a write operation. This is the only part of the Data-flow thread that a conflict may
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when a whole Data-flow thread is declared as a transaction versus a part of a Data-flow thread to be

declared as a transaction.

arise. In this case, if a conflict occurs during the execution only that portion of the

thread will be aborted and rescheduled for execution, retaining any operations done

previously in the Data-flow thread. This avoids re-executing any operations done

previously and did not affect the shared data monitored in any way. The results in

Figure 3.8 show significant reduction of the overhead imposed when rescheduling

only the portion of the thread that uses the shared data, instead of rescheduling the

whole Data-flow thread.

When the granularity of a transaction is reduced, the scope of a conflict detection

is reduced by the TM runtime system. This means that as soon as an operation

on shared data structures is executed the transaction will commit, allowing other

transactions to execute correctly and without a conflict. The average number of

aborts for these two test cases are presented in Figure 3.9. The results clearly state that

when reducing the scope of a conflict detection (i.e. the granularity of a transaction)

the number of conflicts and consequently the number of aborted transaction will

reduce significantly.

In the previous two figures results were presented for both the TM implemen-

tation and the proposed implementation of combining the Data-flow model with

transactions. The small variance in the results show an instability of the execution

that is affected mainly by the TM runtime system. The nature of a TM implemen-

tation is that every execution is different from any other. The important thing that

should be taken from this is that adding Data-flow to a software TM implemen-
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tation does not add any significant extra overhead to the performance of the TM

system used. This means that by combining the two models, their overheads are not

necessarily combined to the new proposed model.

3.7 Conclusions and Contributions

This chapter reports the lessons learned from integrating, DDM with TM. DDM of-

fers the benefit of avoiding sharing of mutable data while expressing large amounts

of parallelism. However, it is not always possible to avoid sharing mutable state and

that reduces parallelism in the DDM model. By adding TM to DDM (DDM+TM),

further parallelism is exploited while mutable shared state is introduced in a compos-

able way. To test DDM+TM, two applications are ported that require transactional

memory: Random Counter and Labyrinth an implementation of Lee’s parallel rout-

ing algorithm. Results show good opportunities for performance scalability when

using the integration of the two models.

The experiments evaluated indicate that, from the runtime integration point of

view, existing software implementations can be integrated without major problems.

The biggest interaction and point for further exploration comes with the scheduling.

When a complete DDM thread is a single transaction, the TSU could take ownership

of the restart mechanism and reschedule the thread.

The major contributions of this work are:

• The first software integration of transactions into a thread based Data-flow

implementation as a way to introduce shared state in the Data-flow model.

• The DDM runtime system of TFlux is extended to support transactions by

integrating a software transactional memory library (DDM+TM [10, 11]);

• Analysis of the overheads created by the integration of the two models.

DDM+TM extends the TFlux directives to develop Data-flow applications with

new pragmas for TM. The extended TFlux runtime system with functionality pro-

vided by a software TM was also described. The new runtime system was tested by

developing two applications that require TM: Random Counter and an implemen-

tation of Lee’s parallel routing algorithm.
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Chapter 4
Data-Driven Multi-threading on Many-core

Systems

The development of software that is able to exploit large amount of hardware re-

sources is one of the biggest challenges the community faces. In this work a Data-flow

based system is proposed that can be used to exploit the parallelism in large-scale

many-core processors. The proposed system - TFluxSCC - is an extension of the

TFlux DDM, which evolved to exploit the parallelism of the 48-core Intel SCC pro-

cessor. With TFluxSCC scalable performance is achieved using a global address

space without the need of hardware support for cache-coherence. The scalability

study shows that application’s performance can scale, with speedup results reaching

up to 48x for 48 cores. The findings of this work provide insight towards what a

Data-flow implementation requires and what not from a many-core architecture in

order to scale the performance.

4.1 Motivation

Scaling the performance of an application can be achieved by either improving the

hardware, or developing more efficient software to solve the particular problem.

To retain the power-performance efficiency to an acceptable level we are currently

exploring parallel processing as the way to scale performance. Consequently, the

trend today is to include more and more cores into the processor resulting in what is

known as a multi- and many-core processor. From the hardware design perspective,

the more parallel units offered for execution, the higher the performance that can be

achieved. From the software design perspective though, this new trend creates new
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challenges. To achieve scalable performance in these new systems, programmers

are required to think parallel. This essentially means learning new programming

models and developing new algorithms that exploit parallelism. Therefore, the

solution to the scalability of the performance depends on scalable hardware with

increasing number of computational units along with efficient programming and

parallel execution models that hide the hardware complexity from the programmer.

The objective of this work is to show how a software implementation of the

DDM model of execution can offer performance scalability on a many-core archi-

tecture by efficiently exploiting the parallelism and at the same time relieve the

programmer from the hardware details, such as data communication. The complete

software platform presented in this work is based on the TFlux platform [18]. It

offers an environment for parallel execution on many-core architectures that is able

to scale without major hardware requirements or programming effort. The exper-

imental processor Intel SCC [104] was used to test the implementation. The SCC

was developed by Intel for many-core software research, as a representative for fu-

ture many-core processors. The proposed system, called TFluxSCC [16], includes a

source-to-source preprocessor that takes as input programs in C, augmented with

directives that specify the threads and their dependences, as well as, a runtime sys-

tem to handle the scheduling of the threads in a Data-flow manner. The evaluation

is performed on a real Intel SCC system and the model is implemented in software

as a library that is linked to the application.

4.2 Intel SCC Architecture

The need to optimize performance per watt has resulted in the increase of the number

of cores in processor chips [59]. Many light-weight cores will be replacing the few

sophisticated cores we have currently in multi-core chips, creating the many-core

chips with hundreds or more cores. This work examines the Intel SCC experimental

processor as a 48-core ’concept vehicle’ created by Intel Labs as a platform for many-

core software research [104].

The Intel SCC processor consists of 24 dual-core tiles interconnected by a 2D-grid

network as illustrated in Figure 4.1. These tiles are organized in a 6x4 mesh with

each one containing two cores with dedicated L1 and L2 caches of 16KB and 256KB

respectively, 16KB Message Passing Buffer (MPB) for message storing travelling
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Figure 4.1: Intel SCC top-level and tile top-level architecture.

through the network, a Traffic Generator (TG) for testing the performance of the

on-chip network, a Mesh Interface Unit (MIU) connecting the tile to its’ network

router and two test-and-set registers.

The maximum main memory the current system can support is 64GB and the 32-

bit memory addresses of the cores are translated into system addresses by the MIU

through a lookup table (LUT). The main memory of the system is located outside the

chip and the access to it is achieved through four on-chip DDR3 Memory Controllers

(MC). The SCC supports both distributed and shared memory models. The system

memory is composed of four regions. Each cores’ private main memory (Private off-

chip memory), the systems’ global address space (Shared off-chip memory), the Message

Passing Buffer (MPB) used to store messages to be sent through the network (Shared

on-chip memory) and the L2 cache of each core.

The Intel SCC is equipped with a large number of light-weight processing units

with low power consumption and with multiple memory controllers serving them.

Based on the characteristics of the Intel SCC, it is understood that future many-core

processors will focus on energy-efficient designs. Expensive, in matters of design-

and operating-cost, hardware support units will be avoided and other solutions

must be exploited. One example in the Intel SCC is the lack of a cache-coherence

mechanism [105], where caching is only supported for data allocated on the private

address space. Techniques like this though, have an impact on the performance and
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the programming of new architectures.

Being an experimental processor, the SCC comes with a concept Programming

API called RCCE that supports the Single Program Multiple Data (SPMD) model of

execution. It supports C/C++ programming languages with RCCE API extensions

to implement the message passing communication of the system. More information

on the RCCE communication environment and all the operations supported can be

found in [15].

4.3 TFluxSCC Implementation

The goal of this work is to achieve performance scalability of the DDM model using

the TFlux Platform on the Intel SCC processor. It is also important to show that

using the DDM model of execution on the Intel SCC it is possible to exploit the

performance even for simple scalable hardware. TFlux uses compiler directives

as to define DThreads and the dependences amongst them. Given that TFlux is an

existing platform, the programming style and syntax for TFluxSCC were maintained.

The global address space of the SCC was used for storing application data. Thus,

no communication mechanism is necessary to exchange data between cores as the

hardware system itself will take care of this. This way the programming directives

of TFlux remained unchanged as no addition information was needed. Therefore,

this allows the portability of the already existing applications.

Although the Intel SCC supports global address space, there is no cache-coherence

protocol. In order to ensure correctness of the data coming from the global address

space, the SCC does not allow the use of the cache for storing application data

coming from the global address space. The DDM model though, and consequently

the TFluxSCC implementation, doesn’t require cache-coherence as it doesn’t allow

simultaneous access on shared data. In a DDM program, data is shared through the

input and output of the threads as they are defined by the dependences declared

by using the pragma directives. Consequently, at each moment only one thread can

access a specific data structure on the global address space. Thus, caching global

address space data is possible when using TFluxSCC. To ensure correctness, the

cache is flushed after the thread completes its execution, as to guarantee that the

shared data is saved back to memory.

The SCC configuration was modified (using a modified Linux image, provided
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Figure 4.2: Comparing speedup results of uncacheable against cacheable shared memory on the

Intel SCC.

by the SCC platform) as to allow the caching of data coming from the global address

space. The TFluxSCC runtime was also modified as to flush the cores caches after

writing data to the global address space, using the DCMflush() routine. To measure

the impact on the performance imposed by this technique both scenarios were tested

and Figure 4.2 presents the speedup results for 48-cores. In the first scenario (Un-

cacheable Shared Memory) all the applications tested were implemented in TFluxSCC

without caching application data. The second scenario (Cacheable Shared Memory)

shows the results when allowing the caching of the application data coming from

the global address space.

Conventional shared-memory parallel programming models require more so-

phisticated hardware components, that in systems of 100s -1000s of cores would be

both power and performance inefficient due to the extra hardware and the overheads

imposed by the coherence protocol [106]. TFluxSCC guarantees correct execution

without major impact on the performance while at the same time maintain hardware

simple.

4.3.1 TSU Implementations

The TSU implementation in the TFlux Platform is a semi-centralized implementation.

This means that except from the TSU thread, part of the scheduling operations are

executed by the application threads. This technique was used as an optimization

that reduces the overheads of the TSU functionalities on a multi-core system [18].

Since there is only one instance of the TSU structures in TFlux this needs monitoring
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and locking of shared structures. Using shared structures on systems with a large

number of cores will eventually create contention among the cores and locking can

possibly result in starvation. For this reason no locking scheme is supported by the

SCC.

In the original TFlux TSU (Figure 4.3(a)), the operation that handles the update

messages involving all application threads is centralized. This means that the update

messages that notify a thread that is ready to execute is sent explicitly by the TSU

thread. In large-scale systems and in applications with a large number of update

messages this can become a bottleneck to the performance due to contention in the

network.

TFluxSCC proposes a non-centralized runtime system that is able to scale and

consume as few resources as possible, thus reducing the overheads to a minimum.

In TFluxSCC the TSU functionalities is distributed to each core in order to achieve

scalability regardless of the number of cores used. Also, only the TSU is allowed

to take control of the execution unit at the time needed and only for as long as it is

needed, as to reduce the runtime overhead to the minimum. Figure 4.3 shows the

evolution process of the TSU from the original TFlux implementation (Figure 4.3(a))

to what is proposed for TFluxSCC (Figure 4.3(c)).

In a first attempt to de-centralize the runtime system a TSU thread was created

on every core (Figure 4.3(b)): the 2-threaded implementation. This implementation

leads to one extra thread per core. As the SCC cores do not support hardware multi-

threading, depending on the scheduling policy, the OS will switch the execution from

the application to the TSU thread allowing the TSU to hold the execution unit from
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Figure 4.4: Execution time of the implementations of the TSU for 48 cores normalized to the 2-

threaded.

the application thread. The TSU implements a busy wait loop in the background

until an update message is ready to be send. Thus, in many cases the TSU will take

control of the execution unit without having any useful work to do that will help

the application progress. To minimize the possible cost of this context switching,

the time that the TSU thread uses the execution unit is controlled. At runtime, the

TSU thread is deactivated for a certain amount of time by adding a sleep call. This

way the application thread is allowed to take control of the execution unit for a

longer period of time and also reduce the number of times that the OS switches the

execution from the application thread to the TSU thread. By limiting the time that the

TSU thread uses the execution unit (sleep implementation) the total execution time is

reduced compared to the baseline implementation (2-threaded) as shown in Figure 4.4.

Although the sleep is effective, it can not be considered for an implementation as the

best sleep time varies with the applications and can not be determined in advance.

Any runtime mechanism used to determine the best value will impose significant

overhead to the execution. While the absence of multi-threading on the Intel SCC is

a limitation, it is also a factor of scalability of the hardware. The simpler the cores

are, the more that can be integrated on the same processor.

To avoid the above restrictions and limitations the Inline implementation is pro-

posed. In this implementation the TSU functionality is integrated with the applica-

tion thread as shown in Figure 4.3(c). The busy wait loop is removed from the TSU,

with its operations being called at the end of the execution of an application thread.

This is the only time that the TSU will have real work to do (send update messages
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to consumers). This solution allows us to utilize the execution unit of the core to the

maximum. Figure 4.4 shows the execution time of the three approaches, normalized

to the 2-threaded implementation, for two applications. The results observed verify

what was discussed earlier.

Figure 4.5 shows the execution time breakdown into the time for the applica-

tion. i.e. the time spent to execute pure application code, and the time for the Inline

implementation of the TSU, i.e. the time spent to execute the different scheduling

procedures, such as the update of the local TSU structures after a thread execution,

the exchange of update messages with consumer threads on different cores. Two

different network frequencies are also tested to find out whether the message ex-

change process of the TSU can be improved by the current hardware. In the baseline

scenario, the SCC network was operating at 800MHz. The network frequency is

then increased to the maximum, which is 1600MHz and observe that the TSU time

remains constant. This means that the time spent by the TSU for message exchang-

ing in the Inline implementation is not significant, as this process is not network

bandwidth dependent. This Figure also shows that the overall TSU overhead is

small and is reduced as unrolling is applied to the applications. This happens be-

cause in DDM every loop iteration is considered a separate thread, thus the more

iterations, the more threads to be scheduled. Using unrolling, the total number of

threads to schedule is reduced, therefore reducing the total time consumed by the

TSU procedures.

51



Table 4.1: Experimental workload description and problem sizes.

Benchmark Source Description Type Unroll Factor Problem Size

Small Medium Large

MMULT kernel Matrix multiply Compute+Memory 16 64x64 128x128 256x256

QSORT MiBench Total Array sorting Memory N/A 100K 200K 400K

QSORT* MiBench Partial Array sorting Memory N/A 100K 200K 400K

RK4 kernel Differential equations Compute 1 1024 2048 4096

TRAPEZ kernel Trapezoidal rule for integration Compute 256 30 31 32

FFT NAS FFT on a matrix of complex numbers Compute 1 32 64 N/A

4.3.2 Compilation Toolchain

As described in Section 4.2, Intel SCC processor comes with it’s own programming

API, called RCCE. Therefore, the RCCE API is integrated into the TFluxSCC prepro-

cessor. The DDM C source-to-source Preprocessor [55] is updated in order to be able

to generate code for the Intel SCC Processor. The basic operations added on top of

the previous implementations of TFlux are the initialization of the platforms’ API,

the support for memory allocation on the global address space and most importantly,

the flushing of a cores’ cache after writing data in the global address space. This

later operation is necessary for the model to synchronize explicitly the cache con-

tents to memory as to ensure correctness, given that no hardware cache-coherence

is available.

Although the intended platform for the implementation is different, TFluxSCC

can be programmed in the exact same way as the original TFlux. This means that the

interface of TFlux (i.e. the directives in Table 2.5) is kept the same in the TFluxSCC

implementation as well. This way, the updated preprocessor provides backward

compatibility with the previous implementations of the TFlux Platform. Using a

predefined command line flag (scc), the preprocessor is signaled to produce code for

the Intel SCC platform. Thus, no change is needed to the previously implemented

applications.

4.4 Experimental Setup

TFluxSCC was evaluated using six different benchmarks. Three of them are kernels

that represent common scientific operations [107], two belong to the MiBench [108]

suite and one to the NAS [64] suite. QSORT* is a subset of QSORT and represents the

partial sorting of an array. In QSORT* the reduction operation is removed and only
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Figure 4.6: Performance scalability of TFluxSCC for different number of cores and input sizes.

the fully parallel part of QSORT is measured, where each core sorts its’ own portion

of the input array. The benchmarks are briefly described along with their different

problem sizes in Table 4.1. For these experiments three different input problem sizes

were used: Small, Medium and Large. The execution time was measured and in order

to minimize the statistical error, each experiment was executed ten times in order

to satisfy a 5% standard deviation. The results shown are the arithmetic average

of the measurements after excluding the outliers. The baseline execution for every

scenario is the best sequential execution of the benchmarks on a single SCC core.

The hardware setup was an Intel SCC experimental processor, RockyLake ver-

sion. The system has a total of 32GB of main memory and a balanced frequency

setting was used for the experiments of 800MHz for the tile, the mesh intercon-

nection network and the DDR3 memory and Memory Controllers. The operating

system used for the Intel SCC cores was the Linux dcm kernel provided by Intel

SCC Communities repository that supports caching the data coming from the off-

chip shared-memory to L2 cache. To cross compile the benchmarks for the SCC

the GCC v.3.4.5 compiler was used with the optimization flag O3. For porting and

executing the applications on the SCC the RCCE v1.4.0 tool-chain [15] was used.

Finally, since this study emphasizes on the scalability of the DDM model, all results

are reported as Speedup compared to the baseline execution.
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4.5 Experimental Results

In this work a scalability study of the performance is performed for applications

with different characteristics. The experimental workloads include applications

that are embarrassingly parallel like QSORT*, applications that are compute-bound

like TRAPEZ and others that have a combination of memory- and compute-bound

nature, as well as more complex dependences among the different parallel threads.

The applications were executed using up to 48 cores and with 3 different input

sizes and present in Figure 4.6 the speedup results compared to the best sequential

execution.

The results in Figure 4.6 show a large speedup for most applications. The ap-

plication with the largest overall speedup is TRAPEZ, which is an application that

is compute-bound and suffers no memory overheads. RK4, which has a consider-

able number of threads and dependences achieves also a good speedup and thus it

shows that the execution of the TSU code does not incur in a large overhead for the

execution of the application. QSORT* shows very impressive speedup, especially

for the medium input size. The reason that the speedup in this case exceeds 48 is

that the input size of QSORT* fits in the cache thus, creating a super-linear speedup

phenomenon. MMULT, that is both a compute- and memory-bound application,

shows smaller but still large speedup. Finally, FFT and QSORT show the smallest

speedup of all applications. QSORT is split into two phases. The first one is like

QSORT* and thus has linear speedup. The following phase combines the results of

all sorted parts as to build the complete sorted vector. This is done as a reduction

using the merge sort algorithm. For this implementation, a binary reduction was

too costly so a more optimized n-way reduction was implemented, where at each

step one thread combines the results of 4 sorted portions and managed to get better

performance.

To see if the data set size affects the performance results the same applications

were also tested with 3 different data set sizes. For MMULT and RK4, as the size

of the input data increases the speedup increases as expected for compute-bound

applications. TRAPEZ achieves linear speedup for the all input sizes. FFT could not

scale to the large input size as it required more memory space than what is available

from the global address space of the SCC. For QSORT∗, which is a memory intensive

application, a different behavior was observed as for the larger set the speedup is
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smaller than for the medium set. This is due to the fact that while for the medium

set the portions of data to sort for the 48-core case are still fitting in the cache, for the

larger set this is not valid any longer. In QSORT a small difference in the performance

was observed while increasing the input size but it is not able to scale more as the

reduction phase is a bottleneck for the performance.

4.6 Conclusions and Contributions

In this Chapter the Data-flow model is exploited on a many-core system. Specifically,

the TFluxSCC platform is introduced that supports the programming and execution

of DDM applications on the Intel SCC processor. Using a set of applications with

different characteristics we were able to show that the performance scales well and

good speedup is observed for most applications. It is relevant to notice that these

are executions of real applications on a real many-core processor and TFluxSCC is

the first software implementation of the DDM model for a many-core processor.

TFluxSCC proves that a software implementation of the Data-flow model can

produce significant performance benefits on future generations of many-core pro-

cessors. Being a software system makes it easily configurable as it has limited

demands on hardware support that allows for a simpler design with a larger num-

ber of execution units and thus increases the parallelism offered by the hardware.

The implementation only requires a global address space for storing application data

and a selective data-cache flush policy for data that were written and came from the

global address space. Hardware support for cache-coherence is not a requirement

and this leads to using simpler, more scalable hardware.

The main contributions of this work are as follows:

• TFluxSCC [16]: The first DDM implementation for a many-core processor;

• Evaluation of TFluxSCC on a real 48-core SCC system, achieving up to 48x

speedup;

Overall, the results show that TFluxSCC scales well with different applications

on a real many-core system. The fact that it gets 48x speedup for 48 cores, for

compute-bound applications shows that the runtime does not add any overhead in

applications that don’t have a performance bottleneck in the algorithm.
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Chapter 5
A Scalable Framework for Task-based

Data-Flow Execution

In this Chapter we propose a task-based Data-flow runtime called SWITCHES, that

implements a lightweight distributed triggering system for runtime dependence res-

olution and uses static scheduling and compile-time assignment policies to reduce

runtime overheads. Unlike other systems, the granularity of loop-tasks can be in-

creased to favor data-locality, even when having dependences across different loops.

SWITCHES introduces explicit task resource allocation mechanisms for efficient al-

location of resources and adopts the latest OpenMP API, as to maintain high-levels

of programming productivity. It provides a source-to-source tool that automatically

produces thread-based code. Application performance on an Intel Xeon-Phi shows

good scalability and surpasses OpenMP by an average of 32%.

5.1 Motivation

SWITCHES [14] is a lightweight runtime system that supports the task-based Data-

flow model as a way to scale performance on many-core architectures. The Data-

flow paradigm has been proposed a long time ago [20, 21] but has only recently

been widely adopted, as it is one of the most effective ways to exploit large-scale

parallelism [9, 22–25, 75, 77, 83, 84]. It is mostly used in the form of task-based par-

allel systems, that allow for efficient handling of synchronization, memory access

and communication latencies. This leads to better utilization of resources and in-

creased performance in large-scale High-Performance Computing (HPC) systems

with hundreds to thousands of cores [109].
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SWITCHES implements a triggering system for dependence resolution, that dis-

tributes the runtime operations to all participating threads. It applies compile-time

static scheduling and assignment policies in order to reduce runtime overheads. It

improves locality, by providing simple mechanisms that allow flexible definition

of task granularity. It provides constructs for declaring cross-loop dependences,

consequently increasing the application coverage and improving the performance

of applications with parallelism across different loops. It also provides for task

resource allocation constructs that make efficient use of the hardware units and im-

prove performance. SWITCHES maintains high levels of programming productivity

by extending the latest standard of the widely used OpenMP Application Program-

ming Interface (API) [46], while providing for a software tool that automatically

produces parallel code.

Figure 5.1 presents how the state-of-the-art OpenMP runtime handles fine-grain

task-parallelism on a many-core system. The graph (on the right) shows the speedup

over the sequential execution of a synthetic application as the the number of tasks

increases but maintains the total problem size constant. On the left of the figure is

the Data-flow graph of the synthetic application that is composed of four parallel

loops with a synchronization point between each one and each loop is divided

into n tasks. In theory keeping the total work constant should keep the speedup

unchanged. Nevertheless, results show that as the number of tasks increases the

speedup is reduced. This can be caused by two factors: (1) the amount of work per

task and (2) the synchronization overhead of the runtime system. As long as the

amount of work per task is large enough, the synchronization time can be hidden,

but as the number of tasks increases for a constant workload, the work per task

is reduced while the synchronization primitives increase. This results in increased

synchronization overhead and consequently a loss in performance.

The application in Figure 5.1 shows the impact of the runtime overhead on

performance using different OpenMP scheduling policies. In OMP-Static and OMP-

Dynamic the iterations of each loop are executed in parallel but synchronization

points (barriers) must be added between the loops (Data-flow graph on the left).

In the former tasks are scheduled statically while in the latter, the runtime handles

everything dynamically. The static implementation has much less performance

loss as most scheduling operations are handled during compilation. The dynamic

scheduler on the other hand has a lot more work to do synchronizing all the tasks
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Figure 5.1: Speedup on the Intel Xeon Phi with 240 threads, varying number of tasks and constant

input compared to the sequential execution of a synthetic application. The Data-flow graph on the left

shows two applications with four loops (the source code is presented later in Figure 5.5). The one on

the left doesn’t have dependences across the loops but instead uses synchronization barriers (OMP-

Static and OMP-Dynamic). The one on the right has dependences across iterations of different loops

(OMP-Dependency and SWITCHES). The graph on the right shows OpenMP loosing performance

as the problem size is divided into more tasks (n).

during execution. OMP-Dependency and SWITCHES remove the barriers and add

dependences across the iterations of the loops (Data-flow graph on the right), but

as the results show the overhead of runtime dependence resolution in OpenMP

dominates the execution time. The implementation of lightweight synchronization

primitives in SWITCHES, in combination with a static runtime system reduces the

overheads and achieves the highest performance. Its low-overhead design also

results in scaling performance even when increasing the number of tasks. Although

this is just a simple application it presents a real problem of current task-based

runtime systems with fine-grain parallelism, that can affect performance scalability

in current and future many-core systems.

5.2 The SWITCHES System

SWITCHES is built to satisfy two major requirements: (1) the scalability of applica-

tion performance, and (2) the reduction runtime overheads. To achieve scalability,

it implements the Data-flow model as a fully de-centralized runtime by evenly

distributing the scheduling operations to all software threads. To reduce runtime

overheads, tasks are assigned to threads statically at compile-time. In addition, each

task holds its own scheduling structures that will be loaded in the scheduler dur-
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Figure 5.2: Type of tasks in the SWITCHES execution model.

ing execution. This design requires minimum support for dynamic scheduling of

tasks, consequently reducing runtime overheads. SWITCHES is publicly available

for download in [1].

5.2.1 The Execution Model

SWITCHES is a task-based model that allows the definition of dependences on every

task in an application. The dependences form a producer/consumer relationship

between tasks, where one task produces data and others consume it. The dependence

itself shows the role of each task, i.e. if there is a dependence from taskA to taskB, then

taskA is the producer and taskB is the consumer. The dependences also define when

a task can be executed, thus additional synchronization primitives are not required.

Dependences are resolved only after all producers have completed execution, and

only then can a consumer task execute.

There are three types of tasks in a SWITCHES program (Figure 5.2): (1)Simple-Tasks,

that represent a non-iterative structured block, (2) Loop-Tasks, that represent itera-

tions of a for loop and (3) Cross-Loop-Tasks, that represent iterations of a for loop

with dependences on iterations of other loops. The difference between 2 and 3 is the

format of their dependences. Loop-Tasks are iterations of a loop that will execute in

parallel but isolated from the rest of the tasks. That is, if another task (of type 1 or 2)

depends on a Loop-Task, then it will wait for the entire loop to finish before starting

execution. Cross-Loop-Tasks are iterations that have direct dependences on itera-

tions of other loops. Assuming a granularity of one, the iterations of a loop have

a one-to-one dependence with the iterations of another loop, therefore providing

cross-loop parallelism.

The level of granularity in such a scenario can be defined by the programmer.

The granularity is increased by packing consecutive iterations into a single task and
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Figure 5.3: The architectural design of SWITCHES.

is particularly efficient as it favors spatial locality. A smaller granularity on the

other hand, improves the parallelism by increasing the number of tasks (fine-grain

parallelism). It is important to notice that, although cross-loop iteration dependences

and task-loop granularity are supported by the latest release of the OpenMP standard

(v4.5), the combination of the two clauses is not.

5.2.2 The Runtime

The scheduling structures of the runtime are called SWITCHES and are implemented

using simple memory constructs, stored in shared-memory and cross-referenced by

the tasks using them. Switches are boolean variables that denote whether a task has

executed (ON) or not (OFF). Each task is assigned its own unique switch that can

only be updated by the thread that executes the task (single-writer). A task is ready

to execute only when all its producers’ switches are set to ON. Each thread checks

the producers’ switches of a task to be executed (multiple-readers) and if all are set to

ON, the task is executed.
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Since SWITCHES is following a single-writer / multiple-readers model for all run-

time data, a protection mechanism for simultaneous access (e.g. locking) on switches

is not required. Because it is built on top of a shared-memory system, switches are

manually updated (from producers caches) to main memory and self-invalidated

in consumers caches. This process adds little overhead to the execution as the

information accessed by each thread is statically assigned at compile-time.

The architectural design of SWITCHES in Figure 5.3 shows that the data of both

the runtime and the application are stored in the shared-memory of the system.

One or more software threads can be assigned to each core (or hardware thread),

depending on the total number of threads defined by the user. A software thread

consists of the SWITCHES Scheduler and the tasks it will execute. Each task is a

combination of the application source code, its own switch and remote references to

all switches of its producers.

The SWITCHES runtime system is implemented in the form of a software unit

called Scheduler. The Scheduler is responsible for monitoring producers’ switches,

updating task switches and triggering ready tasks for execution.

5.2.3 The Scheduler

Most task-based parallel systems that exist today provide for a single, centralized

scheduler that monitors shared-data during execution and resolves dependences

based on reads and writes on those data [22,46]. Depending on the number of tasks,

and the dependences defined, this can lead to an overload of the scheduling unit

which can be expensive (as results show in Figure 5.1).

To solve this, in SWITCHES each thread is equipped with its own Scheduler. Every

Scheduler is statically assigned a number of tasks to execute and only has knowledge

of their incoming dependences, based on the cross-references that each task holds

on its producers’ switches (Figure 5.3). It does not require global information of the

application, making it simple and scalable regardless of the number of threads, as

the more threads used in the execution the less information each one will hold.
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Algorithm 1 The SWITCHES Scheduler.

1: procedure Schedule

2: while !empty(ownTaskQueue) do

3: task← getNextTask(ownTaskQueue)

4: ready← checkSwitches(task)

5: if ready = TRUE then

6: execute(task)

7: turnSwitchON(task)

8: removeTaskFromQueue(task, ownTaskQueue)

9: end if

10: end while

11: resetSwitches(ownTaskSwitches)

12: end procedure

Algorithm 1 shows the pseudo-code of the Scheduler. The Scheduler is assigned a

number of tasks at compile-time in its ownTaskQueue and executes a busy-wait loop

(line 2) until all assigned tasks are finished. The Scheduler first gets a waiting task

from its ownTaskQueue (line 3). It checks the switches of its producers and if all are

set to ON, it triggers the task for execution (line 4). If at least one producer has not

yet finished, the task is not ready for execution and the Scheduler gets the next task

from its ownTaskQueue. To minimize long waits of tasks that are ready to execute,

the checkSwitches() operation (in line 4) stops immediately when it finds the first

producer switch that is not set to ON. Also, as soon as a task finishes execution, the

Scheduler sets its switch to ON (line 7) and removes it from the ownTaskQueue (line

8), so it won’t be checked again.

When a thread finishes all its assigned tasks (its ownTaskQueue is empty) the

Scheduler breaks the busy-wait loop, resets all its tasks’ switches (line 11), exits the

current parallel section and returns to the main program. Switches are reset to avoid

creating multiple instances of the same code and the same switches in case there is

a repetitive execution of the same tasks later in the program (e.g. a function that is

called multiple times). To avoid reseting switches that are still in use by other threads,

resetting takes places only after all tasks of a parallel section have completed.
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5.3 The SWITCHES API

The API of SWITCHES is an extension to the latest OpenMP v4.5 [90]. The appli-

cations are written in C/C++ with tasks and dependences declared using compiler

directives. The API of OpenMP was chosen because it is widely used for parallel

programming in shared-memory environments and, since v4.0 provides a complete

set of directives for declaring tasks and dependences. Consequently, it satisfies the

productivity goal of quickly porting applications for execution with SWITCHES.

The SWITCHES API implements all tasks directives from OpenMP v4.5 and ex-

tends them by using existing clauses from non-task directives such as num threads,

schedule and reduction. Table 5.1 summarizes the basic directives used for writing

a SWITCHES program and highlights in bold the extensions implemented. It is also

important to notice that even though at this time only a portion of the OpenMP

API is implemented, the SWITCHES runtime will not become heavier if it imple-

ments the entire API as it follow a static runtime approach. All necessary scheduling

information are produced during the compilation of each application keeping the

runtime system simple and light. For conventional OpenMP implementations (that

use a dynamic runtime system) to be more flexible with different application most

scheduling data is produced at runtime and require more information to be kept by

the runtime system.

5.3.1 Compiler Directives

Any tasks declared in a SWITCHES program must be enclosed in a parallel section

using a #pragma omp parallel directive. A parallel section works in the same way

as in OpenMP and denotes that all enclosed tasks are to be executed in parallel

according to their dependences. The use of single directive is not required as

in OpenMP, since tasks will only be created once statically at compile time and

started when the master thread reaches the specific parallel section. Any code

written in a parallel section that is not enclosed in a task directive will be executed

by all participating threads as in OpenMP. Different parallel sections are executed

sequentially in the order found in the program, just like in OpenMP. Also, all data

are considered shared across the entire program unless declared otherwise using

the optional private or firstprivate clauses. The former creates a new empty
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Table 5.1: The basic SWITCHES Programming API. In bold the proposed extensions are emphasized

compared to OpenMPa.

Pragma Directives Supported Clauses (Optional) Description

#pragma omp parallel num threads(NUMBER)

private(list)

Defines a parallel function to be

executed by NUMBER threads and

private is used to declare vari-

ables as private to each thread.

#pragma omp parallel for private(list)

num threads(NUMBER)

schedule(type:[,CHUNK])

reduction(OPERATION:list)

Defines a parallel loop with each

iteration considered a task. All

clauses have the same function-

ality as in OpenMP.

#pragma omp task

#pragma omp master

private(list)

firstprivate(list)

depend(type:list)

Defines a task and its depen-

dences using the depend()

clause. private and

firstprivate have the same

functionality as in OpenMP. The

master clause in SWITCHES

extends a normal task that

will be executed by the master

thread.

#pragma omp taskloop

#pragma omp for

private(list)

firstprivate(list)

grainsize(CHUNK)

depend(type:list)

num threads(NUMBER)

schedule(type:[,CHUNK])

reduction(OPERATION:list)

Defines a loop task with

grainsize defining the num-

ber of consecutive iterations

assigned to each task. The

depend clause is used to apply

dependences to the iterations,

while the num threads clause

explicitly allocates resources

for a loop task. The schedule

clause defines the scheduling

policy of the loop (static or

cross). A taskloop directive

can also support a reduction

function using the reduction

clause.

aMore directives are implemented but in this table only the most relevant ones to the applications

tested are presented. Details on all supported directives and instructions for installing SWITCHES

can be found in Appendix A and on-line in [1]
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variable private for every task, while the latter will also initialize it with the value of

the corresponding global variable at the time the task is called.

The #pragma omp task directive defines a structured block as a task of type

Simple-Task. The depend(type:list) clause defines the data processed by the

task. The list argument holds the name of the data (variables, arrays, etc.). The type

argument indicates whether the data will be read (in), written (out), or both (inout).

The #pragma omp taskloop directive declares iterations of a loop as tasks of

type Loop-Task or Cross-Loop-Task. Similarly to OpenMP, the grainsize clause

defines the number of consecutive iterations to be packed for each task. In contrast

to OpenMP, in SWITCHES the user can explicitly define the number of threads to use

for the execution of a taskloop with the num threads clause. This can be beneficial

for applications with limited parallelism where loops with little work do not occupy

all available resources. By using this clause it is possible to utilize cores, that would

otherwise be idle or free cores that don’t do any work at all. SWITCHES also supports

the definition of dependences on a taskloop directive. The depend clause is used

as described earlier for the task directive. The SWITCHES taskloop directive also

implements the schedule clause (from the #pragma omp for directive). This clause

is used to define a policy for scheduling loop tasks to threads. Two policies are

supported at the moment, (1) static, which is similar to OpenMP and (2) cross,

that declares the iterations of the loop as tasks with dependences. With static,

iterations of the loop are declared as tasks of type Loop-Tasks, while with cross

iterations are declared as Cross-Loop-Tasks. Note that, in such case all associated

loops must have the cross policy.

If the static scheduling policy is used along with the depend statement, a single

dependence will be declared on the entire loop. If the cross policy is used, depen-

dences will be applied on individual iterations of the associated loops and create a

scenario with Cross-Loop Iteration Dependences. The CHUNK parameter is used to define

the number of consecutive iterations to be packed in a single task (similarly to the

grainsize clause). The final extension of SWITCHES compared to OpenMP, is the

reduction clause where a loop of tasks can be declared as having a reduction oper-

ation after all iterations are completed. SWITCHES supports all OpenMP standard

reduction operations with multiple reduction variables declared in the list option.
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#pragma omp taskloop grainsize(4)
   for (i = 0; i < SIZE; i++)
   {
      yt[i] = 0.0;
      for (j = 0; j < SIZE; j++)
        yt[i] += c[i][j]*y[j];
      k1[i] = h*(power[i]-yt[i]);
   }

// Barrier

#pragma omp taskloop grainsize(4)
   for (i = 0; i < SIZE; i++)
   {
      yt[i] = 0.0;
      for (j = 0; j < SIZE; j++)
        yt[i] += c[i][j]*(y[j]+0.5*k1[i]);
      k2[i] = h*(power[i]-yt[i]);
   }

for (i = 0; i < SIZE; i++)
#pragma omp task depend(out:k1[i])
{
   yt[i] = 0.0;
   for (j = 0; j < SIZE; j++)
     yt[i] += c[i][j]*y[j];
   k1[i] = h*(power[i]-yt[i]);
}

for (i = 0; i < SIZE; i++)
#pragma omp task depend(in:k1[i])
{
   yt[i] = 0.0;
   for (j = 0; j < SIZE; j++)
     yt[i] += c[i][j]*(y[j]+0.5*k1[i]);
   k2[i] = h*(power[i]-yt[i]);
}

#pragma omp taskloop depend(out:k1[i])
                   \ grainsize(2)
   for (i = 0; i < SIZE; i++)
   {
      yt[i] = 0.0;
      for (j = 0; j < SIZE; j++)
        yt[i] += c[i][j]*y[j];
      k1[i] = h*(power[i]-yt[i]);
   }

#pragma omp taskloop depend(in:k1[i])
                   \ grainsize(2)
   for (i = 0; i < SIZE; i++)
   {
      yt[i] = 0.0;
      for (j = 0; j < SIZE; j++)
        yt[i] += c[i][j]*(y[j]+0.5*k1[i]);
      k2[i] = h*(power[i]-yt[i]);
   }
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Figure 5.4: Cross-Loop Iterations Dependences.

5.3.2 Cross-Loop Iteration Dependences

As explained earlier, OpenMP does not allow the definition of dependences on a

taskloop directive. It supports dependences on loop iterations only by using the

task directive within the body of a for loop. This limits the level of granularity of

tasks with dependences to one iteration per task, affecting the locality of the data and

limiting the performance in certain applications. To increase the level of granularity

of a taskloop, OpenMP offers the grainsize clause but since dependences cannot be

defined on a taskloop directive, a synchronization barrier will be inserted at the end

of the loop. This adds additional synchronization overheads and ignores cross-loop

parallelism that may exist between two different loops (see Figure 5.4).

With the extensions on the taskloop directive described earlier, SWITCHES al-

lows the packing of consecutive iterations into a single task and can then define

dependences on these tasks (Cross-Loop-Tasks). Thus, SWITCHES provides local-

ity for tasks of the same loop and at the same time offers asynchronous execution of

tasks from different loops (cross-loop parallelism) by removing all barrier synchro-

nization. Note that this is applied to different loops, in contrast to OpenMPs’ doacross

technique that uses the ordered directive to serialize iterations in nested loops [90].
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5.3.3 Task Resource Allocation

The distribution of resources within a parallel region in OpenMP is a responsibility

of the runtime. OpenMP only allows explicit definition of resources in a parallel

construct, that denote how many threads will participate in the specified parallel

region. But, the increased parallelism and dependences in task-based models, pro-

vide the user with information that can be vital to the performance of an application.

Dependences can be a natural limitation in the scalability of an algorithm, and using

the entire pool of execution units leads to wasting resources. A possible solution

in a dynamic runtime system is the use of a work-stealing approach that reassigns

tasks to different threads during execution. Such a technique tries to balance the

workload in the available resources but it also increases the work of the scheduler

and depending on the application it may increase runtime overheads. Such a solu-

tion cannot be used in a static runtime system as it would diminish all the benefits

of a static implementation. To address this problem, SWITCHES employs the ex-

plicit allocation of resources per task. SWITCHES extends the taskloop directive to

use the num threads clause to allow for explicit definition of threads to be used for

the execution of Loop-Tasks and Cross-Loop-Tasks. Therefore, SWITCHES allows

for finer-grain allocation of resources that overcomes the scalability boundary in

algorithms with data-dependences and efficiently uses the available resources.

5.3.4 Example

Figure 5.5 shows an example that makes use of the extensions proposed. It depicts

a kernel with two loops that have cross-loop iteration dependences and split the

execution resources. Figure 5.5 also presents a graphical diagram of the same exam-

ple. Loop A is producing data in array k1, while Loop B consumes data from k1, thus

defining a dependence. Analyzing the algorithm, the iterations of the two loops have

a one-to-one dependence on array k1 only, thus only k1 needs to be declared in the

depend statements. All other data used by the two loops could have been declared

as well but the system would have ignored them, as there are no true dependences

on any other data. To define the cross-loop dependence, the scheduling policy of

the two loops is declared as cross and in the depend clause the indexes of the con-

tinuous dependent iterations are added. Note that the CHUNK in the schedule clause

must be the same number as the end-index of the dependences, so that consecutive

67



#pragma omp p a r a l l e l num threads ( 1 0 )

{

/ / Loop A

#pragma omp taskloop schedule ( cross , 2 ) depend ( out : k1 [ 0 : 2 ] ) num threads ( 5 )

{

for ( i = 0 ; i < SIZE ; i ++)

{

yt [ i ] = 0 . 0 ;

for ( j = 0 ; j < SIZE ; j ++)

yt [ i ] += c [ i ] [ j ] ∗ y [ j ] ;

k1 [ i ] = h ∗ ( power [ i ]−yt [ i ] ) ;

}

}

/ / Loop B

#pragma omp taskloop schedule ( cross , 2 ) depend ( in : k1 [ 0 : 2 ] ) depend ( out : k2 [ 0 : 2 ] )

\ num threads ( 5 )

{

for ( j = 0 ; j < SIZE ; j ++)

{

yt [ j ] = 0 . 0 ;

for ( k = 0 ; k < SIZE ; k++)

yt [ j ] += c [ j ] [ k ] ∗ ( y [ k ] + 0 . 5 ∗ k1 [ j ] ) ;

k2 [ j ] = h ∗ ( power [ j ]−yt [ j ] ) ;

}

}

. . .

}

Loop A: schedule(cross,granularity)
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depend(out : k1[0:2])

depend(in : k1[0:2])

Granularity = 2

Loop B: schedule(cross,granularity)

Granularity = 2

Figure 5.5: Cross-loop Iteration Dependences example and diagram. This example is part of a larger

synthetic application that is based on a differential equation kernel (RK4, presented in Section 5.5).

The Data-flow graph of the entire application is shown in Figure 5.1.
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int main()
{

 #pragma omp task depend()
 {
  // do something
 }

…

 #pragma omp task depend()
 {
  // do something
 }

}
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Figure 5.6: The layered design of SWITCHES and Translators operations.

dependent iterations are packed to the same task. Summarizing, the example shows

that each loop consists of tasks with chunk size of two iteration per task, and every

task of Loop A has a direct dependence on the corresponding task of Loop B. Finally,

it is explicitly specified that only 5 threads will be used to execute the tasks of each

loop. Thus, the two loops split the available resources of the parallel region (10

threads) to execute their tasks in parallel.

5.4 The Translator

The translation of a directive-based application to a SWITCHES parallel program is

automatically done by a source-to-source tool called the Translator. The Translator is

a software tool built using Lex and Yacc that parses the C/C++ directive-based code

and produces threaded parallel code. Pragma directives can be inserted anywhere

in the code and also in multiple files. The Translator also produces error and warning

messages when directives or clauses are not used correctly. Such messages include

directive syntax errors, unknown parameters in clauses, mismatching resource allo-

cation values among others.

The layered design of SWITCHES and the operations executed by the Translator

are shown in Figure 5.6. The Translator takes four major inputs from the programmer:
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Figure 5.7: Assignment policies.
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#pragma omp task
{…}
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Task1:
checkP(task1);
…

Update(sw1);
Task2:
checkP(task2);
…

Update(sw2);
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Figure 5.8: Application translation procedure.

(1) the source code files, embedded with pragma-directives, (2) the scheduling policy,

that defines how tasks are divided to participating software threads, (3) the assignment

policy, that denotes how software threads are assigned to hardware resources, and (4)

the number of threads, that execute the application. The number of software threads

can be as many the Operating System (OS) allows. After parsing the directives

in the source code, it automatically extracts the tasks and their dependences and

produces the synchronization graph of the application. It then executes a transitive

reduction operation on the graph to remove redundant dependences that might have

been implicitly or explicitly declared [110]. This optimization reduces the size of

the graph and the runtime data structures that are produced, thus reducing the

workload of the scheduler and minimizing runtime overheads.

To further reduce runtime overheads compared to other dynamic parallel sys-

tems, many of the scheduling operations in SWITCHES are moved to compile-time

and executed by the Translator. The Translator will use the final graph to impose

the scheduling and assignment policies by statically mapping tasks to threads and

threads to cores respectively. At the moment SWITCHES schedules tasks based

on the availability of the threads using a round-robin scheme. During the program

translation the user can choose from 3 predefined assignment policies: Compact and

Scatter that can also be found in the icc compiler as affinity policies (KMP AFFINITY)

or the gcc compiler with the names close and spread. The third and new assignment

policy is called Hybrid as it implements a combination of the previous two. Each

policy is presented in the example of Figure 5.7 where a system with 3 cores and 3

hardware threads per core is assumed. The Compact policy assigns software threads

close to each other occupying the hardware thread units of a core before moving to

the next one. This policy does not utilize all cores when the software threads are
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less than the hardware threads of a system. To evenly utilize all available cores, the

Scatter policy assigns the software threads to the cores in a round-robin way. The

Hybrid policy is a combination of the two previous, where Scatter is used when

the software threads are fewer than the number of the available cores to increase

processor utilization, while Compact is used when the number of threads is more

than the available cores to favor locality of shared data in the caches. The Hybrid

policy is implemented for simplicity of the execution of the Translator. Depending

on the number of threads defined by the user at the translation stage, the system

automatically determines the appropriate policy to use. All policies use the software

thread-id to assign the threads to the cores.

After invoking the Scheduler it creates the output parallel source code as shown

in Figure 5.8. It can also generate a fully-detailed synchronization graph for possible

debugging of the application. The produced source files consist of the tasks code,

the creation of the software threads (pthreads) and the SWITCHES runtime system.

The output source code can be compiled with any commodity C/C++ compiler.

5.5 Experimental Setup

SWITCHES is evaluated on a set of seven data- and task-parallel applications. Ap-

plications were chosen based on references from other evaluations of task-based

runtime systems and many-core processors ( [18, 72, 109, 111, 112]). Details for all

the applications and their input sizes are shown in Table 5.2. The Data Set Sizes

represent the total number of computation iterations each application executes on

its data.

As representatives of data-parallel applications the following ones are used: (1)

Q12, a C-code version of Query 12 from the TPC-H Benchmark suite [73] that em-

ulates the Scan and Join operations on the data from two tables representing a

memory-bound application, (2) MMULT, implements a matrix multiplication algo-

rithm [18], (3) RK4, solves a differential equation [18] and (4) SU3, is a component of

Wilson Dirac equation that involves the multiplication with the gauge-links (vector

multiplication of complex C99 numbers) [111].

Task-parallel applications include: (1) Poisson2D, a 5-point 2D stencil computa-

tional kernel of the Poisson equation from the KASTORS Benchmark suite [109], (2)

SparseLU, from the BOTS Benchmark suite [112] that computes an LU matrix fac-
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Table 5.2: Experimental workloads description and data set sizes.

Benchmark Description Data Set Sizes Compared Implementations

Type Name (Computation Iterations)

DS1 DS2 DS3

Data
-p

ar
all

el
Q12 Nested-Loop Join from TPC-H [73] 60K · 1.5K 60K · 15K 600K · 150K OMP-Dynamic-For

OMP-Static-For

OMP-Task

OMP-Taskloop

MMULT Matrix multiply [18] 256 · 256 512 · 512 1024 · 1024

RK4 Differential equation [18] 4800 9600 19200

SU3 Wilson Dirac equation [111] 1920K 3840K 7680K

Ta
sk

-p
ar

all
el Poisson2D 5-point 2D stencil computation [109] 4096 8192 16384 OMP-Task

OMP-Task-Dep

OMP-Taskloop

SparseLU LU factorization of sparse matrices [112] 120 · 32 240 · 32 480 · 32

OCEAN Red-Black solution (Gauss-Seidel [113]) 4096 · 4096 8192 · 8192 16384 · 16384

torization using sparse matrices creating an imbalance workload and (3) OCEAN,

representing a Red-Black solution of the Gauss-Seidel method [113].

The main evaluation platform is an Intel Xeon Phi 7120P (Knights Corner, KNC)

with 61 cores and 4 threads per core (totaling 244 hardware threads). Note that

only 60 cores are used as to avoid any interference by the OS that always uses

the last core of the system. This board has a total of 16GB of main memory and

runs at 1.238GHz. To cross-compile applications for the Xeon Phi the Intel icc

v.17.0.2 compiler is used (and the corresponding libiomp5 library) with the -mmic

flag indicating the Many Integrated Architecture (MIC) target. SWITCHES was

also tested on a smaller system, a 12-core machine with 2 6-core (12 hardware

threads) AMD Opteron 2427 running at 2.2GHz with an available main memory of

31GB. This system is running an Ubuntu SMP x86-64 OS with the gcc v.5.4 compiler

(with libgomp1 v.6.2). For both compilers the -O3 optimization flag was used.

The results are presented as Speedup, calculated by dividing the execution time of

the best sequential implementation of each application with the time of the parallel

execution. The execution times are collected using the gettimeofday system call that

provides a resolution of microsecond. The time is measured from the start of the first

parallel function until the last, including all runtime costs (such as thread creation

and scheduler initialization). Execution time is determined by the arithmetic average

of five consecutive execution runs after removing the outliers (for all experiments,

the standard deviation is within 5%).
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5.6 Experimental Evaluation

The main objectives of the evaluation are: (1) to show the performance scalability

achieved by SWITCHES, and (2) to compare it with the state-of-the-art OpenMP. The

OpenMP applications used in the evaluation, are the original source codes taken from

the suites described in Table 5.2. In BOTS suite, SparseLU is implemented with both

the parallel for and the omp single directives for creating tasks. In these tests

the omp single version was used because it makes the implementation purely task-

based and identical to the scenarios tested in KASTORS [109]. In order to provide

a fair comparison of the two runtime systems, OpenMP source codes were used as

is for the SWITCHES evaluation without extra optimizations. Only the syntax of

the directives for the scenarios with cross-loop dependences were modified since

OpenMP currently doesn’t support it.

As far as KNC-specific optimizations, only SU(3) uses vector intrinsics for both

implementations as it was the only application that already supported it. Because

this works studies performance scalability of the runtimes on a large-scale many-

core and not the capabilities of the underlying hardware, we chose not to alter the

original source codes with hardware-specific optimizations. Scalability results for

each application are for the largest data set. For granularity the value that produces

the highest speedup for each application was used. The input size is defined in

the title and the granularity for each runtime tested is shown in parenthesis in the

key-legend of each chart. Section 5.6.4 shows how each system performs for each

data set by presenting results of a weak scaling test. SWITCHES results are taken

using the hybrid assignment policy to increase resource utilization when the number

of threads is less than the number of available cores (60).

5.6.1 Data-Parallel Application

Data-parallel applications (Q12, MMULT, RK4 and SU3), are compared against the

OpenMP parallel-for using both static and dynamic scheduling policies (Static-

For and Dynamic-For respectively). For the scenarios using the dynamic policy, the

runtime system dynamically decides all scheduling options, therefore granularity is

not statically changed. The applications are also implemented using OpenMP tasks

(Task). Note that the version of the OpenMP library used at the time of this work still
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Figure 5.9: Q12 speedup on the KNC.
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Figure 5.10: MMULT speedup on the KNC.

doesn’t support the OpenMP v4.5 (that includes the taskloop directive), therefore

to support higher granularities in OpenMP the taskloop scenarios (Taskloop) were

manually implemented using the taskgroup directive, as suggested by the Red

Hat Developer Program in [114]. The granularity level used to achieve the highest

performance for the specific system is shown in paranthesis next to the name of each

system in the charts.

Results in Figure 5.9 show Q12 as an application that benefits more from a

task-based runtime system. A task-based implementation provides isolation to the

execution of each task, therefore allows better scheduling of the Q12 workload as the

tasks execute independently. Both SWITCHES and OpenMP (Taskloop) achieve the

highest speedup for 240 threads (72× and 67× respectively) but only in the scenarios

where the granularity of tasks is increased. The rest of the OpenMP implementations

achieve a maximum speedup at only 180 threads. The work distribution at 240

threads is too fine-grain to hide the runtime overheads of these implementations,

while the light-weight runtime of SWITCHES achieves the highest performance at

240 threads. Oversubscribing the KNC to 300 and 360 threads results in degraded

performance as it can cause higher resource contention and pipeline latencies [115].

MMULT in Figure 5.10 shows that different OpenMP implementations achieve

the same performance. Also, increasing the number of threads from 180 to 240

results in little benefit for OpenMP. The size of the work assigned to each thread

decreases as the number of threads increases, creating fine-grain parallelism, with

the overhead of the OpenMP runtime dominating the execution. The low overhead

imposed by SWITCHES allows scalability regardless of the number of threads and

benefits compared to OpenMP as the number of threads increases. SWITCHES

achieves a speedup of 141×, while the best OpenMP results is 103× for Static-For.
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Figure 5.11: RK4 speedup on the KNC.
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Figure 5.12: SU3 speedup on the KNC.

Again, oversubscribing the cores reduces the speedup due to overheads imposed

due to resource contention.

RK4 (results in Figure 5.11) is a load-balanced application where each iteration

of the containing loops produces the same amount of work. Its algorithm suggests

that consecutive iterations use data from consecutive memory locations. Therefore,

the best results are produced with the implementations that increase the granularity

to favor locality (Static-For (79×), Taskloop (66×) and SWITCHES (92×)). The Task and

Dynamic-For implementations are limited to a maximum of 15× and 10× speedup

respectively, because the runtime does not take into account the data-locality of

adjacent tasks. Because each task in RK4 uses different data for its computations,

oversubscribing of the cores could hide memory latencies and increase the perfor-

mance and that is why SWITCHES performance improves after 240 threads.

SU3 is another application where the impact of the runtime system is shows on its

execution (Figure 5.12). Although the algorithm implemented limits the scalability

of all systems to 120 threads, the low overhead of SWITCHES to the execution allows

it to achieve a speedup of 81× compared to the best OpenMP result of 57× (Dynamic-

For). SU3 shows a large drop of performance when the number of threads is increased

to more than 240, in contrast to SWITCHES that maintains steady performance.

5.6.2 Task-Parallel Applications

SparseLU, OCEAN and Poisson2D are compared against OpenMP task-based im-

plementations with dependences (Task-Dep), and without dependences (Task and

Taskloop). The latter require explicit declaration of synchronization between parallel

loops as dependences are not declared.

SparseLU is an application that provides cross-loop parallelism between three
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Figure 5.13: LU speedup on the KNC.
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Figure 5.14: Ocean speedup on the KNC.
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Figure 5.15: Poisson2D speedup on the KNC.

loops that can be expressed using tasks with dependences. But, results in Figure 5.13

show that if dependences are applied on OpenMP tasks (Task-Dep), the parallelism

offered cannot produce enough performance to overcome the overhead of runtime

dependence resolution. When dependences are declared in OpenMP, shared data are

packed in a single dependence graph and marked for monitoring during execution.

This monitoring is managed by a centralized runtime system with its workload

increasing as the amount of data to monitor is increased. If the dependences are

removed, this overhead is removed but parallelism across loops is not exposed and

potential performance is lost. Because SWITCHES takes care of the dependences

and the scheduling during compilation, it is possible to expose parallelism across

loops without incurring additional runtime overheads and increase the performance

over all OpenMP implementations, achieving a speedup of 80× compared to the

66× of Taskloop. Oversubscribing cores in SparseLU helps SWITCHES to improve

performance beyond 240 threads, while for OpenMP the performance degrades as

it happens in RK4.

OCEAN (Figure 5.14) has a very balanced workload and using dependences ex-

poses even more parallelism. But the large number of dependences in the algorithm

produce too much overhead for the OpenMP runtime to handle efficiently. The static
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and distributed nature of SWITCHES dependence resolution avoids the extra over-

head and produces as speedup of 55× for 120 threads. Increasing the granularity of

tasks benefits the execution even more and the speedup of Taskloop increases to 34×

compared to Tasks’ 31×. The algorithm of Poisson2D (Figure 5.15) shows a scalability

limitation and the maximum speedup is achieved at 32 threads (11× for SWITCHES

and 9× for Taskloop). SWITCHES also seems to be loosing performance as the num-

ber of threads increase beyond that point, while OpenMP maintains steady results.

The reason for this is that the workload of Poisson2D is not well-balanced by the

algorithm, therefore a static implementation such as SWITCHES is bound to loose

performance. On the other hand, the dynamic scheduler of OpenMP can handle

the load imbalance at runtime and maintain the higher performance. To address the

issue of load-balance in SWITCHES explicit allocation of resources is used for the

two parallel task-loops of Poisson2D as shown in Section 5.6.3.

5.6.3 Explicit Task Resource Allocation

As explained in Section 5.3.3 one way to solve the low-utilization problem of an

application when using a static scheduling runtime system is to explicitly allocate

resources for tasks. Figure 5.16 highlights the benefit this technique in combination

with the cross-loop dependences and variable granularity introduced by SWITCHES

(results in Figure 5.15 also make use of all these techniques). When the granularity

is increased to 4 iterations per task and at the same time split the resources (threads)
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by each system on the AMD Opteron.

among the two loops of the application, the maximum speedup of Poisson2D is

increased by almost 24%. SWITCHES unveils the cross-loop parallelism and the

splitting of the resources allows for better allocation of the hardware resources as

the two loops execute simultaneously. This technique also helps to use the resources

more efficiently during the execution, especially in applications with scaling limita-

tions such as Poisson2D that don’t scale beyond 32 threads.

5.6.4 Discussion

Figure 5.17 summarizes all results on the KNC by showing the highest achieved

speedup for each application for all OpenMP policies and SWITCHES. Table 5.3

shows the execution times of each of these scenarios. To examine the behavior of

SWITCHES on a smaller system the same workloads were executed on an AMD 12-

core Opteron processor and present the highest achieved speedups in Figure 5.18.

Overall, the results show that SWITCHES is on par with OpenMP for most appli-

cation on the AMD system. When the applications are scaled to a larger system,

SWITCHES surpasses OpenMP for all applications, achieving an average of 32%

performance increase compared to the the best OpenMP results. Results for SU3 on

the AMD system are not presented as the implementation used had Intel-specific

intrinsics for the Xeon Phi processor. Even though it is not shown in these charts, for

SparseLU, which is an application from the BOTS benchmark suite [112], SWITCHES

was also compared against OmpSs. OmpSs showed performance that is on par

with OpenMP on both hardware systems and thus the same conclusions drawn for

OpenMP are also valid for OmpSs.

Figures 5.19 and 5.20 present results from a weak scaling analysis of SWITCHES
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Table 5.3: The execution time of each scenario that achieves the highest speedup result. The input

sizes for all applications are those of previous scenarios except for SparseLU on the AMD which a size

of (96 · 64) was used.

System Application Serial SWITCHES System Application Serial SWITCHES

KNC

Q12 373.35s 5.18s

AMD

Q12 398.15s 125.21s

MMULT 78.17s 0.55s MMULT 10.74s 1.61s

RK4 32.27s 0.34s RK4 5.78s 1.30s

SU3 3.59s 0.048s - - -

SparseLU 6798.37s 84.53s SparseLU 40.12s 4.16s

OCEAN 14.57s 0.26s OCEAN 3.88s 0.71s

Poisson2D 12.14s 1.07s Poisson2D 4.36s 1.65s

compared to all other OpenMP implementation described earlier. In a weak scaling

scenario the runtime systems is tested as to how it behaves when varying the data

input with a fixed number of resources. In these tests the maximum hardware avail-

able resources (240 threads) were used for all application except Poisson2D where

the number of threads that achieves the highest performance (that is 32 threads)

was used. Three different data sizes were used to monitor the behavior. In gen-

eral for most applications OpenMP closes the performance gap with SWITCHES as

the data size increases. This happens because with larger data sizes the work per

task increases compared to the work of the runtime system. Consequently, OpenMP

manages to hide its runtime overheads within the application computation. Looking

at the results from the opposite perspective, reducing the data size should expose the

runtime systems operations and make them more prone to overheads. This happens

to OpenMP but not to SWITCHES due to its low-overhead runtime implementation.

Another important outcome of this study is that for Task-parallel applications with

dependences between the executing tasks OpenMP never surpasses the performance

of SWITCHES (Figure 5.20) as the dependence resolution mechanism of SWITCHES

performs better than that of OpenMP (Task-Dep) and at the same time the extra par-

allelism produced by using task dependences keeps the performance of SWITCHES

at high levels compared to the OpenMP scenarios that don’t make use of them (Task

and Taskloop).

Taking all results into account, the a static implementation of a Task Data-flow

model produces less overheads and has little impact on the parallel execution of

the tested application. The de-centralized architecture of SWITCHES allows for
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Figure 5.20: Speedup achieved with the best configuration for each system when scaling the input

size of the Task-parallel applications with fixed resources (240 threads for all, except Poisson2D that

achieves best speedup results at 32 threads).

performance scalability regardless of the number of threads, while its lightweight

implementation of handling dependences minimizes the runtime overhead of re-

solving dependences and minimizes the negative effect on the application execu-

tion. This is obvious in many of the results as application performance when using

OpenMP in many cases stops scaling at 180 threads as the work per task becomes

too little to hide the scheduling overheads. On the other hand, for some application

performance increases when using SWITCHES even when oversubscribing the sys-

tem with more software threads than the available hardware resources as it reduces

runtime overheads.

Although a static implementation of a runtime system may not be able to ef-

ficiently handle applications that dynamically change their load, alternative ap-

proaches are shown that can be beneficial. One such approach is the explicit task

resource allocation construct that in combination with the cross-loop dependences

proposed helps in hiding load-imbalances or low resource utilization.
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5.7 Conclusions and Contributions

This chapter introduces SWITCHES [14], a lightweight scalable runtime system that

uses the Data-flow paradigm to schedule parallel tasks in many-core systems. In

large-scale systems where the number of cores keeps increasing, it is important to

improve performance that comes from parallelism. To achieve this, SWITCHES

implements a fully distributed scheduler that uses static scheduling policies and

produces smaller runtime overheads. Therefore, it allows for finer-grain tasks to

be implemented as a means to increase the parallelism exposed without loosing

performance.

SWITCHES also incorporates a source-to-source tool that produces parallel code

from a sequential application embedded with OpenMP v4.5 API directives. It auto-

matically produces the Data-flow graph with the tasks and their dependences and

statically schedules the tasks to the available execution units. Its execution model

supports variable-granularity loop tasks that, combined with cross-loop iterations

dependences and explicit resource allocation techniques, increases the exploitable

parallelism, takes advantage of the data-locality in loop tasks and efficiently allocates

hardware resources.

The main contributions of this work are:

• A lightweight, scalable runtime system for task-based Data-flow execution on

HPC many-cores, called SWITCHES [14];

• Extensions to the OpenMP v4.5 API to support explicit resource allocation and

cross-loop dependences with variable granularity on the taskloop directive;

• A source-to-source tool (Translator) that uses the source code with directives

to produce parallel pthread code embedded with the runtime, that can be

compiled with any commodity compiler;

• Comparison of SWITCHES performance with state-of-the-art OpenMP on a

real HPC many-core using task- and data-parallel applications.

SWITCHES is evaluated on a 61-core Intel Xeon Phi, using both task- and data-

parallel applications from different benchmark suites. Without affecting program-

ming productivity, SWITCHES achieves significant application performance benefits

(an average of 32%), compared to the state-of-the-art OpenMP implementation.
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Chapter 6
Autonomic Mapping for Efficient Utilization of

Resources

The main objective of the work described in this chapter is to efficiently map the

tasks to the underlying hardware topology in an automated way, using application

characteristics such as the dependences between tasks. Currently, to achieve this,

each application must be studied exhaustively as to define the usage of the data

by the different tasks, that would provide the knowledge for mapping tasks that

share the same data close to each other. In addition, different hardware topologies

require different mappings for the same application to produce the best perfor-

mance. In this work the synchronization graph of a task-based parallel application

that is produced during compilation is used in order to try and automatically tune

the scheduling policy on top of any underlying hardware using machine learning

techniques. This tool is integrated into an actual task-based parallel programming

platform - SWITCHES (see Chapter 5) - and is evaluated using real applications from

the SWITCHES benchmark suite. Results are compared with the execution time of

predefined schedules within SWITCHES and observe that the tool can converge

close to an optimal solution with no effort from the user and using fewer resources.

6.1 Motivation

Designing a parallel program has its degree of difficulty. Several programming

models have been proposed to alleviate this problem. The current trend that seems

to be more appropriate to exploit large degree of parallelism in an application is to

specify the program as a set of tasks which may also be related with each other by
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Figure 6.1: Execution time of Round-Robin and Random policies compared to hand-coding an

optimum schedule for synthetic kernels implemented in SWITCHES. This test was performed on an

Intel Xeon Phi using 240 threads.

data-flow dependences. Many runtime and programming systems today support

the task-based model of execution with the most widely known system to be the

latest release of OpenMP v4.5 [90]. Analyzing the original code and generating

these tasks and dependences is already a difficult task. Nevertheless, as systems

increase their scale, it is not only the number of processing elements that increase

but also the heterogeneity of the system as a whole. Thus, the allocation of tasks to

resources becomes a huge challenge. The challenge is not only to address runtime

dynamic behavior of the tasks but also to determine a schedule of the tasks that

results in the best execution time, as for example, a task that produces data that

is consumed by another task should be co-located in the same resource or placed

nearby as to avoid or reduce the data transfer overhead. Given the complexity

of the underlying infrastructure and of the synchronization graph representing an

application, this mapping is a difficult problem to solve.

Figure 6.1 shows the performance of Round-Robin and Random schedules for

two synthetic task-based kernels (one without dependences and one with depen-

dences between a number of tasks), compared to hand-coding an optimum schedule.

Hand-coding an efficient schedule of any application requires a highly experienced

programmer with significant knowledge of the application characteristics (tasks,

dependences and data usage) and the underlying hardware. Results show that in

such a scenario, execution time can be reduced by as much as 2x. Nevertheless,

the complexity and the variety of both applications and hardware systems increases

with time and make the Hand-coded scenario an unfeasible solution.
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Therefore, for future complex applications and large-scale parallel systems, through

this work the use of a machine-learning approach is proposed as to determine a

task-to-resource mapping, that will take into account both the application and the

hardware characteristics. This work uses a Genetic Algorithm (GA) where the

population is composed of different task-to-resource assignment schedules and the

generations evolution is guided by the evaluation metrics (e.g. execution time or

energy consumption) as to converge to the best schedule, depending on the metric

defined by the user. The GA is integrated with an actual parallel programming and

runtime system, thus the iteration over the different steps of the optimization such as

creation of new schedules, execution and evaluation, are executed in an autonomic

way, on real applications. The final schedule is determined automatically by the

process, but this is not without cost as it requires the execution of the application

several times. In this work the initial population is chosen carefully so that the GA

converges faster towards the better schedule. This optimization step is done either

ahead of the execution of the real application, in an initialization/setup phase of the

system and application tuning, or as part of a scenario where the same application

is to be executed multiple times on the same system and each time it executes its

metrics results are stored and used by the GA to improve the schedule for the future

runs.

6.2 Optimizing Task Scheduling

The task scheduling problem is a well studied field and appears numerous times

in the literature. Background search is focused mostly in GAs or even the more

general heuristic-based solutions for task scheduling problems and shows a large

number of algorithms proposed to solve different scheduling problems [116–124]. All

these algorithms are implemented and tested on multi-processor systems. Some are

targeting heterogeneous systems with computation units with variable capabilities

and other were proposed for homogeneous parallel systems. What all these have in

common though is that they are all tested using randomly generated task graphs and

are implemented and evaluated as simulations. In contrast, this work implements a

GA within a parallel programming and runtime system that allows for using it with

real applications and producing schedules for real hardware systems.
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6.2.1 The NSGA-II Genetic Algorithm

A Genetic Algorithm is a heuristic procedure that tries to find the optimal solution

to a presented problem. The main principle of a GA is that crossing two individuals

can result an offspring that is better than both the parents. Also, a slight mutation of

the produced offspring can generate better individuals. The crossover mating takes

two individuals of a population as inputs and generates two new offsprings. This

way some of the parent characteristics are maintained in individual offsprings in new

generations. The mutation randomly transforms an offspring that was also randomly

chosen from the set of all new offsprings produced by the crossover process. Finally,

the best solutions are selected using a fitness function and transferred as inputs to

the next generation and the next crossover mating. A fitness function is defined

upon the problem that the GA is trying to solve and the best individual corresponds

to the one having the best fitness value. For example, in most scenarios tested in

this work the fitness function detects the smaller execution time therefore, the best

individual corresponds to the one with the smallest execution time.

A GA is a loop that starts with an initial population and evolves through gen-

erations using a selection followed by a sequence of crossovers and a sequence of

low-probability mutations. The loop can terminate either by a limit on the total

number of iterations or the stability of the results defined by the fitness evaluation

function.

To optimize the scheduling of the tested applications in this work, an already

existing and well known multi-objective genetic algorithm was used, the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [125]. The NSGA-II was pro-

posed in order to address the main disadvantages of the previous NSGA algorithm

proposed in [126]. The original NSGA algorithm suffered from high computational

complexity (O(MN3)), lack of elitism and the need for specifying the shared pa-

rameter. The NSGA-II alleviates the above disadvantages and presents a solution

with a fast non-dominated sorting approach with O(MN2) computational complex-

ity, where M is the number of independent sortings to be executed and N is the size

of the population.

The NSGA-II is using a selection operator that creates a mating pool by combining

the parent and offspring populations and selecting the best (with respect to the fitness

function) N solutions. Being a multi-objective algorithm the NSGA-II can also use
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Figure 6.2: The design of the auto-tuning tool and how it is integrated in the SWITCHES Translator.

more than one parameter to its fitness function. It can combine the values of 2 or

more variables as to select the best individuals within a population. This can be

particularly useful in scheduling problems where more than one parameters might

be important in the execution of a task-based application (e.g. power-performance

efficiency).

Details of the NSGA-II implementation [125, 127] are omitted from this work as

it is used unmodified.

6.3 Auto-tuning Static Scheduling

To create the auto-tuning scheduling tool, the NSGA-II algorithm was integrated

inside the SWITCHES Translator (see Section 5.4). Figure 6.2 shows the design of

this integration and how the GA works together with the Translator to produce an

optimized schedule for any input application. The directive-based source code of the

application is given to the Translator as it would normally happen for a SWITCHES

program. The Translator then analyzes the code and produces its SG. The SG is then

passed to the Genetic Algorithm Component (GAC), that implements the NSGA-II.

The GAC also needs some parameters that are required for the GA execution. These

parameters are: (i) the number of generations to execute the algorithm, (ii) the size

of the population for each generation, (iii) the objectives that the fitness function will

use to evaluate each schedule and (iv) the mutation and crossover probabilities.
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The number of generations and the size of each population can be explicitly

defined by the user. The values are based on the cost tolerance accepted by the user

for a specific application. The larger the size of a population or the more generations

requested, the more time it will take for the auto-tuning tool to finish and produce a

schedule that is optimal. The fitness objectives are used by the GAC to evaluate each

produced schedule and rank it in the current population. The objectives currently

supported by the tool are performance (execution time), power consumption and

processor temperature. The tool ranks the produced schedules in a population

based on the objective chosen by the user. As mentioned in Section 6.2.1, the NSGA-

II is a multi-objective algorithm that allows using multiple objectives to decide the

classification of the fitness evaluation. Therefore, the user can chose more than one

objective to be considered for the evaluation fitness of the population. Finally, the

mutation and crossover probabilities are usually decided empirically as they are

affected by the problem that is to be solved.

When the GAC receives the SG and the GA parameters, it produces an initial

population with random schedules. As an optimization the default SWITCHES [14]

schedules are included in the initial population. The GAC then starts executing the

application with each schedule in the population and stores the evaluation results

when the execution is finished (fitness evaluation). At the end of each generation,

each schedule is ranked based on the objective/s requested. If, for example, the

objective is performance, the schedules are ranked in ascending order, starting with

the schedule that produces the smallest execution time. At the Selection stage, the

GAC implements a tournament selection process [128] that uses this ranking to

decide which schedules in the population should be used for the Crossover, that are

then used to create the population of the next generation. When the new generation

is created, a Mutation function is applied to the population that alters one or more

values of a schedule. The mutation process is useful to maintain the genetic diversity

from one generation to the next. Based on the mutation probability, it is likely that

one or more schedules don’t change from one generation to the next.

When the GAC execution reaches the limit of generations defined by the user,

the best ranked policy is identified and passed back to the Translator to produce the

parallel source code. This schedule is also stored in a text file, that can be loaded by

the Translator at a later time.
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Table 6.1: Experimental workloads description and data set sizes.

Benchmark Description Complexity

MMULT Matrix multiply [18] 1024 · 1024

RK4 Differential equation [18] 19200

Poisson2D 5-point 2D stencil computation [109] 16384 · 128

No-Dependences Random generated tasks 1024 · 100

Dependences Random generated tasks with dependences 1024 · 100

6.4 Experimental Results

6.4.1 Experimental Setup

This auto-tuning tool is evaluated on a set of 3 data- and task-parallel real appli-

cations from the SWITCHES evaluation suite 5.5. Two computation kernels with

randomly generated task graphs are also tested (No-Dependences and Dependences).

The former allows fully parallel execution of the tasks without imposing any kind

of dependences between them, while the latter represents a synthetic kernel with

randomly generated dependences between tasks. Details for all the application and

their input sizes are shown in Table 6.1. The complexity column represents the total

number of computation iterations each application executes on its data.

The evaluation platform of this work is an Intel Xeon Phi 7120P with 61 cores

and 4 threads per core (totaling 244 hardware threads). Note that only 60 cores were

used as to avoid any interference with the OS that always uses the last core of the

system. This board has a total of 16GB of main memory and runs at 1.238GHz. To

cross-compile applications for the Xeon Phi the Intel icc v.17.0.2 compiler (and the

corresponding libiomp5 library) is used with the -mmic flag indicating the Many

Integrated Architecture (MIC) target and the -O3 optimization flag. The results are

presented as execution time that is collected using the gettimeofday system call that

provides a resolution of microsecond. The time is measured from the start of the first

parallel function until the last, including all runtime costs (such as thread creation

and scheduler initialization).

The parameters used for the GA algorithm are 10 generations for the real applica-

tions tested and 50 for the synthetic kernels. Each generation has a population of 64

schedules. The mutation and crossover probabilities are 0.0001 and 0.6 respectively.
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Figure 6.3: The execution times for the No-Dependences synthetic kernel. The dotted line shows the

results obtained by the auto-tuning tool for 50 generations. The produced schedule converges within

15% of the optimal scenario, while it uses 30% less computational resources.

These values were chosen based on literature study and small scale testing scenarios

with various other values that show that beyond these values, no significant differ-

ence is observed. It is important to notice that different problems require different

values, therefore for new applications it is important to test various options.

6.4.2 Synthetic Applications

The synthetic kernels were evaluated using two SWITCHES predefined policies,

Round-Robin that assigns equal number of tasks to all threads in a round-robin way

and Random that assigns the tasks to the threads in random way. The synthetic

kernels were also analyzed to find the data usage of the tasks in both of them and

the task dependences in the second kernel. This information was used to create a

Handcoded scheduling policy that was deemed as the optimal scenario. Results of

these executions are shown in Figures 6.3 and 6.4. Running the synthetic kernels

through the auto-tuning tool shows that it can converge close to the optimal scenario

(within 15% for the No-Dependences and 10% for the Dependences scenarios) and in

both cases achieves better performance than the original predefined SWITCHES

policies. Results showed that the kernel with the task dependences requires more

generations of the algorithm and this happens due to the dependences between the

tasks and complexity of its SG.

In addition, an important outcome of these scenarios is that the schedule pro-

duced by the auto-tuning tool that is near the optimal Handcoded schedule is achieved
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Figure 6.4: The execution times for the Dependences synthetic kernel. The dotted line shows the

results obtained by the auto-tuning tool for 50 generations. The produced schedule converges within

10% of the optimal scenario, while it uses 30% less computational resources.

by using 30% less computing resources. Scenarios Random, Round-Robin and Hand-

coded are using all 240 hardware threads of the system, while the schedule of the

auto-tuning tool is using 168 hardware threads for the No-Dependences and 166 hard-

ware threads for the Dependences.

6.4.3 Data-Parallel Applications

Two data-parallel application from the SWITCHES benchmark suite were used for

this scenario, MMULT and RK4. The results are shown in Figures 6.5 and 6.6

respectively. The data set of both applications is equally divided to all tasks with

most of the tasks using their own data. In the cases that tasks share data, they are

shared in a consecutive way. That is, consecutive tasks share data from consecutive

memory locations. Therefore, the best policy is to assign tasks in a consecutive

way. This is exactly what the Round-Robin policy does and this is why there is no

extra benefit achieved from the auto-tuning tool. Finally, in contrast to the synthetic

kernels presented earlier, for these data-parallel applications, the auto-tuning tool

chooses to use all hardware resources available to achieve the performance shown.

6.4.4 Task-Parallel Applications

This scenario uses the Poisson2D, a task-parallel application from the SWITCHES

benchmark suite. This application achieves its highest speedup with the default

SWITCHES schedule at 32 hardware threads (on an Intel Xeon Phi system). It
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Figure 6.5: The performance achieved by the auto-tuning tool for MMULT is the same as what is

already achieved by the Round-Robin policy of SWITCHES.
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Figure 6.6: The performance achieved by the auto-tuning tool for RK4 is the same as what is already

achieved by the Round-Robin policy of SWITCHES.

also shows significant performance loss for any number of threads greater than 32.

Figure 6.7 shows results when the auto-tuning tool runs for only 32 hardware threads

and observe a small performance improvement compared to the default SWITCHES

schedule. Studying the policy produced by the auto-tuning tool, it chooses to use

hardware threads that belong to the same core, while the Round-Robin policy in this

case is using separate cores for each of the 32 hardware threads used. The auto-

tuning tool chooses to place depended tasks that share the same data on the same

cores and thus minimizes the data transfer overhead.

As explained earlier, using all the hardware resources for Poisson2D with SWITCHES

results in decreasing performance due to algorithmic limitations of the application

and inefficient assignment of the tasks by the SWITCHES default policy. Figure 6.8

shows the results of the auto-tuning tool for a Poisson2D execution using 240 threads.
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Figure 6.7: The auto-tuning tools slightly reduces the execution time by using hardware threads from

the same cores, in contrast to the Round-Robin policy that uses different cores.
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Figure 6.8: The execution time of Poisson2D when using all available resources is reduce by 2×

when using the auto-tuning tool. The tool also achieves this by using only 70% of the total hardware

resources.

The auto-tuning tool finds a schedule that significantly increases the performance

and achieves a 2× improvement compared to the default Round-Robin policy. Similar

to the case of the synthetic kernels presented earlier, this results is achieved by using

30% less hardware resources.

6.4.5 Seed Optimization

As explained in Section 6.3, in its initial population the auto-tuning tool includes

the default schedules that SWITCHES can produce. Using the default schedules as

a starting point for the auto-tuning tool reduces the size of the search space of the

GAC and improves the convergence speed to an optimal solution. This is especially

important in many-core systems where the search space of the auto-tuning tool
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Figure 6.9: The auto-tuning tools performs better when SWITCHES predefined assignment policies

are included in its initial population.

(i.e. the number of resources) will be very large, as in such a case the number of

combinations of resources that create a possible schedule will also be large. Figure 6.9

shows results of this optimization tested with MMULT.

6.4.6 Discussion

The results show significant performance benefit especially in the cases of task-

based applications. Irregularities in the execution, the dependences and the data

accesses require more effort from the programmer in order to produce the most

performance-efficient scheduling policy. A rigorous and detailed analysis of each

application is required by the user in order gather all these information and produce

the fastest scheduling policy. The aim of this work is to automate this procedure

and relief the programmer from this task. Currently, the auto-tuning tool requires

for the application to be executed multiple times with different scheduling policies

as input in order to decide on the best policy for a specific application. But, in

HPC (that is the target of this work) the same applications are executed many times

to study different parameters of their output. The execution though, remains the

same. Therefore, every time an application is executed, we could use a different

scheduling policy and store the performance outputs for every execution. These

outputs can then be loaded to the auto-tuning tool for training in order to provide a

faster schedule.

We also studied the case of training the auto-tuning tool with a small input size

and then use the output schedule to execute the application for a normal input size.
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This study showed that applications with data irregularities will not benefit as data

accesses are not taken into account. To speedup this process and provide useful

information to the user community, a study of application characterization would

help create categories of applications with similar characteristics that react similarly

to the same schedules as well.

6.5 Conclusions and Contributions

The auto-tuning tool is designed and implemented to optimize schedules for exe-

cution time, power consumption and temperature. Because the NSGA-II algorithm

used is a multi-objective GA, the tool also supports the optimization of schedules

for any combination of the above metrics. The GA (NSGA-II) is integrated within

the SWITCHES programming tool (the Translator) and because SWITCHES runtime

uses static schedules it allows feeding the Translator with any policy during compi-

lation. This allowed the implementation of a GA that produces schedules that are

fed to the Translator and evaluated at the same time. This integration, allows the

sharing of the application synchronization graph with the auto-tuning tool to use it

to extract information about the tasks, their dependences and their data usage. The

SWITCHES runtime system uses a static scheduler and avoids any interference in

the execution of other runtime overheads as to isolate the auto-tuning process for

better understanding of the results.

The main contributions of this work are:

• The integration of a well known GA (NSGA-II [126]) in a real parallel pro-

gramming and runtime task-based system (SWITCHES [14]) that offers an

auto-tuning scheduling tool for parallel applications;

• Achieve maximum performance with fewer resources for applications with

complex dependences and irregular data accesses without any significant effort

from the programmer.

Results on the 61-core Intel Xeon Phi show that maximum performance can be

achieved by using significantly fewer resources (approx. 30%) than what is available

and what the default scheduling policies use. This improves the efficiency of the

execution as higher performance with fewer resources can result in a reduction of

the power consumption.
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Chapter 7
Conclusions and Future Work

Improving the performance of parallel applications is a joint task that involves the

hardware and the software. From the hardware design perspective, scalable ar-

chitectures with large number of cores increase the throughput of an application,

thus more small and simple cores must be added in future processors. From the

software design perspective, lightweight, low-overhead and scalable runtime sys-

tems increase parallelism exploitation. Combine the two and application perfor-

mance can be increased and scaled on large-scale many-core systems. At the same

time, power-performance efficiency is achieved by efficiently utilizing the avail-

able resources while minimizing the communication overhead with locality-aware

scheduling. Finally, programming productivity is increased with powerful tools that

provide a simplified way for parallel application development. The work presented

in this thesis uses the task-based Data-flow model as a way to extract application

parallelism and proposes a complete software framework for parallel application

development and execution on HPC many-core processors. Each of the objectives

addressed in this thesis is evaluated using a set of application that show the benefit

of each studied characteristic.

7.1 Achieved Objectives and Contributions

To exploit more application parallelism (Objective 1 - Section 1.4.2) TM is integrated

in the Data-flow model and a way to exploit speculative parallelism. The DDM+TM

system [10, 11] is the first implementation of a Data-flow-based runtime that intro-

duces shared mutable data and uses TM to monitor transactional data and abort
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conflicting accesses on shared variables. Results show good opportunities for per-

formance when using the integration of the two models, while at the same time

more parallelism is exposed to Data-flow, that would otherwise be a set of serialized

computations. Although performance improvement is achieved in a small-scale

multi-core, the runtime overheads analysis shows that a software implementation

of a TM runtime system can’t scale sufficiently. Therefore, integrating TM into the

Data-flow model shows significant potential but is still not efficient enough to be

used in large-scale many-core systems.

To increase programming productivity (Objective 2 - Section 1.4.3), all DDM

runtime systems to date have been incorporated under a common programming

framework [12, 13]. To provide for a user-friendly programming environment, the

most commonly used API, the OpenMP v4.5, was extended to support explicit

task resource allocation mechanisms and variable loop task granularity to increase

data-locality even for loop tasks with inter-dependences. A source-to-source tool is

implemented that automatically produces thread-based code that can be compiled

by any off-the-shelf C/C++ compiler, applying all existing optimizations [14].

To overcome the limitations of scalable architectures (Objective 3 - Section 1.4.4),

the TFluxSCC system [16] is proposed in this work as the first implementation of

the DDM model on a many-core processor. A set of different applications was used

to test the scalability of their performance and good speedup is observed for most

applications. The introduced implementation proves that a software runtime of

a Data-flow-based model can produce significant performance benefits on future

generations of many-core processors. While a considerable speedup was achieved

for certain applications, porting the TFlux platform on the Intel SCC, revealed various

issues that can potentially harm the scalability of the runtime on more complicated

architectures. Issues such as size of the runtime system and its data structures,

communication between scheduling units loaded on each core and the number of

messages exchanged can potentially become a bottleneck as we scale to more cores.

These findings led to the design of a runtime system that is lightweight, low-

overhead and scalable to any number of cores, with little support from the hard-

ware (Objective 4 - Section 1.4.5). In this thesis a software framework called

SWITCHES [14] is developed for exploiting large amounts of parallelism on many-

core processors supporting global address space without needed hardware support

for cache-coherence. The evaluation of the proposed system was conducted using
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HPC-based application on a real HPC-based many-core (the 61-core Intel Xeon Phi).

Results show good scalability and surpass the state-of-the-art by an average of 32%

for all applications. To reduce the underutilization of hardware resources (Objective

5 - Section 1.4.6) this work employs machine-learning techniques. The proposed

framework is extended to use the synchronization graph of the application and au-

tomatically tune the scheduling policy using machine learning techniques. Results

show that maximum performance is achieved by using significantly less resources

(≈ 30%) than what common scheduling policies use. This leads to better hardware

utilization and reduced energy consumption.

7.2 Open Research Directions

The results of this thesis show that if algorithms exhibit enough parallelism and

architecture designs large number of hardware resources, it is possible to offer tools

to the users that will provide increasing performance in a user-friendly way. At the

same time, new research directions arise from the outcomes of this work.

7.2.1 Direction 1: Speculative Parallelism on Many-cores

The study on integration of speculative parallelism inside the Data-flow model

(Chapter 3) has shown the success of integrating two different models as a way to

increase application parallelism exploitation. Results also show that current TM

software implementations produce significant runtime overheads that increase with

the complexity of the application and the number of resources used. But newly

introduced many-core processors offer large number of resources, that allow for the

exploitation of more parallelism, therefore potential performance benefits are lost.

Solutions such as hardware TM implementations (e.g. Intel’s Transactional Synchro-

nization Extensions (TSX) [129]) have appeared but not widely adopted due to the

complexity of the hardware. New low-overhead TM implementations that provide

speculative execution must be developed in order to extract more parallelism and

in combination with a Data-flow runtime system to achieve maximum exploitation

of parallelism in an application. The large number of cores that will be provided

in future many-core processors will allow to sacrifice a small number of them for

handling costly TM runtime operations such as transactional data monitoring.
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7.2.2 Direction 2: Inter-node Scalability using Data-flow

This thesis addresses the scalability of application performance on many-cores with

large number of cores integrated in a single processor. Since the target of this work

is the HPC community it is essential to study how the proposed system can be

integrated in large clusters with multiple many-cores connected together. Message-

passing systems are already very efficient is such systems but the definition and

implementation of senders and receivers as well as the messages to be exchanged

fall into the ability of the programmer. One direction to follow is the integration of

the Data-flow implementation we propose in this thesis within a message-passing

system. The Data-flow runtime system can be used for executing tasks on a single

node, while the message-passing system can be used for expanding the execution to

the entire cluster. The data dependences already provided by Data-flow can be used

as a way to identify the messages to be exchanged with other nodes taking part in the

execution. This allows the exploitation of the benefits of the Data-flow model and

takes advantage of the very efficient implementations of message-passing systems

that exist today.

7.2.3 Direction 3: Dynamic Rescheduling of Static tasks

In this thesis we studied ways of providing better scheduling and assignment poli-

cies in order to efficiently utilize the underlying hardware. We employed machine-

learning techniques to train the system and automatically produce optimal policies

based on characteristics from both the hardware and the applications. Such tech-

niques though are application specific and require time. This time may not be always

available, depending on the problem the application is trying to solve. A combi-

nation of a dynamic load-balancer and a machine-learning algorithm can provide a

resource manager that can dynamically adapt to any workload irregularities during

the execution of the application.

7.2.4 Direction 4: Heterogeneous Many-cores

In this thesis we concentrated on increasing parallelism exploitation and scaling ap-

plication performance on many-core processors. With only requiring global address

space for application data, the architecture design was assumed to be homogeneous
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across the entire processor. It is possible that in the future many-core processors

will include cores of different characteristics as to address the heterogeneity of the

workloads. Large-scale systems with multiple processors also use heterogeneous

designs with the use of accelerators with different architecture that the host ma-

chine (e.g. GPUs). The SWITCHES runtime system is designed in such a way that

it distributed the scheduling information to all participating resources. Each task

holds its own scheduling data structures, therefore it can execute anywhere it is

appointed to regardless of the design of the hardware. The programming model

though needs be adapted to new architectures and the framework to be extended t

support heterogeneous systems.

7.2.5 Direction 5: Extension of the programming tool-chain

The programming tools developed in this thesis are used to recognize only parallel

constructs (OpenMP v4.5). The input source code is parsed and whenever parallel

constructs are recognized, the tools (i.e. the Translator) will read-in the information

needed and transform the construct into parallel pthread-based source code. This

procedure is done at a preprocessing stage before compiling the code to produce the

binary. There are tools though that could be used to support the SWITCHES run-

time system along with its API such as the LLVM Compiler Infrastructure [130] in

a more complete infrastructure, that will eventually speedup the process of produc-

ing SWITCHES-based parallel software. At the same time, such tools can provide

more information to the programming platform of SWITCHES that can be used

when developing the Data-flow graph of an application and when implementing its

scheduling policy.

7.2.6 Direction 6: Fault-tolerance

One other direction that this work could be extended to is fault-tolerance and how

the runtime system would react in case of failures in the hardware. It is possible that

many-core processors will have failures and cores could be disabled. In a case this

happens during the execution of an application, a mechanism in the runtime system

that would be able to react accordingly is necessary. In case of a failed core, the

runtime system must be able to reschedule tasks that were assigned to that core to a

different available core, or even equally distribute them to all other cores. SWITCHES
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is built to be fully distributed, thus from the runtime perspective a rescheduling of

a software thread to a different core is possible. From the task perspective, each

SWITCHES task is built in such a way that it holds all the information needed to

be executed. Also, some techniques from the TM runtime support can be used

to suppress changes made to the data of the task in case there is a core failure.

Therefore, if a task is rescheduled to a different core it will have all the information

needed to execute correctly. To support fault-tolerance within SWITCHES a dynamic

rescheduling mechanism is needed (see Direction 3 in Section 7.2.3) that would also

take into account the cases of hardware failures.
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Appendix A
SWITCHES Compiler Directives

A.1 SWITCHES API

The SWITCHES API described here is a subset of the OpenMP standard v4.5. The

implementation of the Translator tool and instructions for installation and usage of

the tool-chain can be found in [1].

A.1.1 Master

#pragma omp master

{ ... }

Definition Specifies that the containing structured block will be executed only

by the master thread of the execution ( MAIN KERNEL).

Clause Default Value Description

NONE NONE NONE
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A.1.2 Global variables

sw global

Definition Used only in front of a global variable declaration in the program in

order to declare the global variable as extern to the new produced

file.

A.1.3 Parallel

#pragma omp parallel [clause, [[,]clause]...]

{ ... }

Definition Forms a team of threads and start parallel execution. Tasks within

the parallel construct will be executed in parallel.

Clause Default Value Description

num threads(INT) ALL Defines the number of threads to use in

the execution of task declared in the spec-

ified parallel construct.

default(STR) shared Defines how to treat all vari-

ables inside the parallel construct.

STR: shared, none

private(list) - For each variable in the private list, a

separate copy will be created for thread

contributing to the execution.

firstprivate(list) - Same as previous but each separate copy

that will be created will also be initialized

to the global value at the time of calling.
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A.1.4 For

#pragma omp for [clause [[,]clause]...]

{

for (I = 0; I < SIZE; I++)

...

}

Definition Specifies that the iterations of the for loop found after the directive

will be executed in parallel by threads in the team.

Clause Default Value Description

num threads(INT) ALL Defines the number of threads to use in

the execution of task declared in the spec-

ified parallel construct.

private(list) - For each variable in the private list, a

separate copy will be created for thread

contributing to the execution.

firstprivate(list) - Same as previous but each separate copy

that will be created will also be initialized

to the global value at the time of calling.

schedule(type [,

chunk size])

static, 32 Declare the type of schedul-

ing policy to use for execut-

ing the iterations of the loop.

type: static, cross

chunk size: VARIABLE | INT

reduction

(operation :list)

- Identify the loop as a reduction

loop. The list declares all reduc-

tion variables in the body of the loop

operation: +, *, -, &, ,̂ |, &&,

||

depend(type:list) - Declare the dependences of

this loop with other tasks.

type: in, out, inout
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A.1.5 Sections

#pragma omp sections

{

[#pragma omp section]

...

[#pragma omp section]

...

}

Definition A non-iterative work-sharing construct that contains a set of tasks

(with no dependences) that are to be distributed among and executed

by the threads in the team.

Clause Default Value Description

NONE NONE NONE

A.1.6 Section

#pragma omp section

{ ... }

Definition Specify a section task (with no dependences).

Clause Default Value Description

NONE NONE NONE
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A.1.7 Task

#pragma omp task [clause [[,]clause]...]

{ ... }

Definition Defines an explicit task with possible dependences.

Clause Default Value Description

default(STR) shared Defines how to treat all vari-

ables inside the parallel construct.

STR: shared, none

private(list) - For each variable in the private list, a

separate copy will be created for thread

contributing to the execution.

firstprivate(list) - Same as previous but each separate copy

that will be created will also be initialized

to the global value at the time of calling.

depend(type:list) - Declare the dependences of

this loop with other tasks.

type: in, out, inout
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A.1.8 Taskloop

#pragma omp taskloop [clause [[,]clause]...]

{

for (I = 0; I < SIZE; I++)

...

}

Definition Specifies that the iterations of the for loop found after the directive

will be executed in parallel by threads in the team.

Clause Default Value Description

num threads(INT) ALL Defines the number of threads to use in

the execution of task declared in the spec-

ified parallel construct.

private(list) - For each variable in the private list, a

separate copy will be created for thread

contributing to the execution.

firstprivate(list) - Same as previous but each separate copy

that will be created will also be initialized

to the global value at the time of calling.

schedule(type [,

chunk size])

static, 32 Declare the type of schedul-

ing policy to use for execut-

ing the iterations of the loop.

type: static, cross

chunk size: VARIABLE | INT

reduction

(operation :list)

- Identify the loop as a reduction

loop. The list declares all reduc-

tion variables in the body of the loop

operation: +, *, -, &, ,̂ |, &&,

||

depend(type:list) - Declare the dependences of

this loop with other tasks.

type: in, out, inout
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A.1.9 Parallel For

#pragma omp parallel for [clause [[,]clause]...]

{

for (I = 0; I < SIZE; I++)

...

}

Definition This construct defines a new parallel function that will only contain

one for loop task. Specifies that the iterations of the for loop found

after the directive will be executed in parallel by threads in the team.

Clause Default Value Description

num threads(INT) ALL Defines the number of threads to use in

the execution of task declared in the spec-

ified parallel construct.

default(STR) shared Defines how to treat all vari-

ables inside the parallel construct.

STR: shared, none

private(list) - For each variable in the private list, a

separate copy will be created for thread

contributing to the execution.

schedule(type [,

chunk size])

static, 32 Declare the type of schedul-

ing policy to use for execut-

ing the iterations of the loop.

type: static, cross

chunk size: VARIABLE | INT

reduction

(operation :list)

- Identify the loop as a reduction

loop. The list declares all reduc-

tion variables in the body of the loop

operation: +, *, -, &, ,̂ |, &&,

||
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A.1.10 Parallel Sections

#pragma omp parallel sections [clause [[,]clause]...]

{

[#pragma omp section]

...

[#pragma omp section]

...

}

Definition This construct defines a new parallel function that will only contain

section task with no dependences. A non-iterative work-sharing

construct that contains a set of tasks (with no dependences) that are

to be distributed among and executed by the threads in the team.

Clause Default Value Description

num threads(INT) ALL Defines the number of threads to use in

the execution of task declared in the spec-

ified parallel construct.

default(STR) shared Defines how to treat all vari-

ables inside the parallel construct.

STR: shared, none
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A.2 SWITCHES Examples

In this section we present some examples of how a SWITCHES program is imple-

mented using #pragma directives. More applications and examples, along with the

Translator tool can be found in the SWITCHES framework on-line at [1].

A.2.1 Example 1: Tasks Dependences

Figure A.1 below, shows a SWITCHES example that implements simple tasks with

dependences. In this example task are declared using the #pragma omp task di-

rective and name the policy to execute the iterations as cross. More SWITCHES

applications and examples can be found in [1].

. . .

#pragma omp p a r a l l e l

{

/ / Task 1

#pragma omp task depend ( out : a , r e s u l t )

{

r e s u l t = a + b ;

a++;

}

/ / Task 2

#pragma omp task depend ( in : a , r e s u l t ) depend ( out : a , b )

{

b += r e s u l t ;

a++;

}

/ / Loop Task 3

#pragma omp for pr ivate ( j ) schedule ( s t a t i c , 4 ) depend ( in : a , b , r e s u l t )

{

for ( j = 0 ; j < SIZE ; j ++)

k1 [ j ] = a ∗ ( power [ j ]− r e s u l t ) + b ;

}

}

. . .

Figure A.1: This is an example of how task and dependences are declared in a SWITCHES program.

119



A.2.2 Example 2: Cross-Loop Dependences

Figure A.2 below, shows an example of a SWITCHES application. It implements

RK4, that solves a differential equation [18]. This type of application presents cross-

loop iteration dependences that can be declared using the #pragma omp taskloop

directive and name the policy to execute the iterations as cross. This example also

shows the introduced clause for resource allocation on task-based directives.

. . .

#pragma omp p a r a l l e l num threads ( 1 0 )

{

/ / Loop A

#pragma omp taskloop schedule ( cross , 4 ) depend ( out : k1 [ 0 : 4 ] ) num threads ( 5 )

{

for ( i = 0 ; i < SIZE ; i ++)

{

yt [ i ] = 0 . 0 ;

for ( j = 0 ; j < SIZE ; j ++)

yt [ i ] += c [ i ] [ j ] ∗ y [ j ] ;

k1 [ i ] = h ∗ ( power [ i ]−yt [ i ] ) ;

}

}

/ / Loop B

#pragma omp taskloop schedule ( cross , 4 ) depend ( in : k1 [ 0 : 4 ] ) depend ( out : k2 [ 0 : 4 ] )

{

for ( j = 0 ; j < SIZE ; j ++)

{

yt [ j ] = 0 . 0 ;

for ( k = 0 ; k < SIZE ; k++)

yt [ j ] += c [ j ] [ k ] ∗ ( y [ k ] + 0 . 5 ∗ k1 [ j ] ) ;

k2 [ j ] = h ∗ ( power [ j ]−yt [ j ] ) ;

}

}

. . .

}

Figure A.2: Source code from an actual SWITCHES application (RK4, presented in Section 5.5).

This example is part of a larger synthetic application that is based on a differential equation kernel.
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