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Abstract—Our target in this work is to study ways of ex-
ploring the parallelism offered by vectorization on accelerators
with very wide vector units. To this end, we implemented
two kernels that derive from the Wilson Dslash operator and
investigate several data layout techniques for increasing the
scalability of lattice QCD scientific kernels suitable for the
Intel Xeon Phi. In parts of the application where real numbers
are used for computation, we see a 6.6x increase in bandwidth
compared to scalar code, thanks to the auto-vectorization by
the compiler. In other kernels where arithmetic operations
on complex numbers dominate, our hand-vectorized code out-
performs the auto-vectorization of the compiler. In this paper
we find that our proposed Hopping Vector-friendly Ordering
allows for more efficient vectorization of complex arithmetic
floating point operations. Using this data layout, we manage to
increase the sustained bandwidth by approximately 1.8x.
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I. INTRODUCTION

An emerging trend in the current design of supercomput-

ers is the use of accelerators as the main source of computing

power. This is evident by the fact that four of the top ten

supercomputers [1] today use accelerators as co-processing

units of the CPU. The increase in the use of accelerators is

a consequence of the fact that they allow packing a higher

floating point performance within a smaller power budget

compared to regular CPUs and this is achieved by using

special purpose hardware. This hardware though requires

additional effort to make use of, such as CUDA cores

which usually require re-factoring of compute kernels such

that they are suitable for streaming floating point engines.

Another example are the wide SIMD floating point units on

the Xeon Phi that also require re-thinking of data layout to

match the SIMD vector width.

In this work we focus on performance gains which can be

achieved by wide vector units on accelerator-based systems

and in particular systems with Xeon Phi coprocessors. To

efficiently use these vector units requires either relying on

the auto-vectorization by the compiler in cases where this

is possible, or alternatively in using so-called intrinsic func-

tions, i.e. vector operations exposed as functions to the pro-

gramming language. To utilize the vector units of the Xeon

Phi we use computational kernels arising from the field of

lattice Quantum Chromodynamics (QCD). QCD is the part

of the Standard Model of physics which describes the strong

interactions, which in turn is responsible for the forces which

hold the quarks within protons and neutrons. Phenomena

which are dominated by the strong interaction include quark-

gluon plasma, which was the state of the very early universe

and the birth, life, and death of stars. Currently, the most

well established way to obtain quantitative results from QCD

is via simulation because of the vast size of data and the

large computation intensity of QCD applications. The need

for more computing power put the Lattice QCD researchers

among the earliest adopters of innovative computing devices

that offer more performance [2], [3], [4].

In this study, we present a bandwidth performance anal-

ysis of the very-wide vectors of the Intel Xeon Phi for

single-precision and complex double-precision data using

compiler auto-vectorization and hand-coded vector intrin-

sics. We evaluate several techniques involving reordering of

data and scheduling of floating point operations, that help

with the vectorization of lattice QCD kernels on the Intel

Xeon Phi. Our results show that when operating on complex

data, hand-coded vectorization produces more efficient code

than compiler auto-vectorization. Furthermore we show that

our Hopping Vector-friendly ordering technique is optimal

for stencil kernels such as those in lattice QCD applications.

II. INTEL MIC ARCHITECTURE

The Xeon Phi coprocessor [5] (codename Knights Corner)

is part of the Many Integrated Core (MIC) Architecture

family from Intel. Each coprocessor is equipped with up to

61 processor cores connected by a high-performance on-die

bidirectional ring interconnect. Each coprocessor includes 8

memory controllers supporting up to 16 GDDR5 channels

(2 per memory controller) with a theoretical aggregate band-

width of 352 GB/s. Each core is a fully functional, in-order

core, that supports 4 hardware threads. The architecture of

the Xeon Phi cores is based on the x86 Instruction Set

Architecture (ISA), extended with 64-bit addressing and

512-bit wide vector instructions and registers that allow for

significant increase in parallel computation. With a 512-bit

vector set, a throughput of 16 double-precision or 32 single-

precision floating point operations can be executed on each

core per cycle when assuming a throughput of one fused

multiply-add operation per cycle. Each core has a 32 KB L1
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data cache, a 32 KB L1 instruction cache and a 512 KB L2

cache. The L2 caches of all cores are interconnected with

each other and the memory controllers via a bidirectional

ring bus, effectively creating a shared, cache-coherent last-

level cache of a total of 32 MB.

Although coprocessors in general are used as accelerators

for offloading computation from host processes, the Xeon

Phi is more flexible with the execution of applications [6].

The Xeon Phi offers three different modes of execution: the

Offload mode where the host CPU offloads the computation

to the coprocessor in the form of parallel threads, similar

to a General Purpose GPU (GPGPU); the Coprocessor-only
mode where the parallel application is launched directly on

the coprocessor that works as an independent compute unit;

and the Symmetric mode, where multiple processes of the

same program can be launched on both the host CPU and

the coprocessor similar to any other message passing model.

III. BENCHMARK KERNELS

Lattice Quantum Chromodynamics (LQCD) [7] is a dis-

crete formulation of QCD on a finite 4-dimensional space-

time lattice that enables numerical simulation of QCD using

Monte-Carlo methods. LQCD is the most well established

method for solving the fundamental theory of strong inter-

actions. Here we use components of the so-called Wilson

Dslash operator [8] as the kernels we target for optimization.

The Wilson Dslash operator applied to a vector ψ is given

in Equation 1.

∑
x′
D[u](x, x′)ψ(x′) =

1

2κ
ψ(x) +

1

2

3∑
μ=0

[(I − γμ)uμ(x)ψ(x+ μ̂)+

(I + γμ)u
−1
μ (x− μ̂)ψ(x− μ̂)]

(1)

where κ is a parameter of the theory, I is the 4×4 unit

matrix, γμ are the four 4×4 gamma-matrices in some basis

(e.g. the Dirac matrices), ψ(x) is a so-called spinor field, x
and x′ are space-time (four components) coordinates, uμ(x)
represents a so-called gauge field, and μ is an index for

the direction (e.g. μ = 0, 1, 2, 3 may represent the t, x, y, z
directions). Lattice QCD simulations typically spend 70-

80% of the execution applying this operator, making it

important to take advantage of any possible optimizations.

A. Stencil operator

The first kernel we implement is a nearest-neighbor 2D

stencil operation. The idea is to emulate aspects of the data

reuse required in the Wilson-Dirac equation. More precisely,

the stencil we implement resembles a discrete 2D Laplacian

operation applied to a field φ given by Equation 2.

φ̂(x) =
1

1 + 4σ

{
φ(x) + σ[φ(x+ î) + φ(x− î) + φ(x+ ĵ) + φ(x− ĵ)]

}

(2)

where x is a coordinate on a 2-dimensional grid with

dimensions denoted by i and j and σ being a constant. This

specific choice of normalization allows repeatedly applying

the operator on a vector while keeping the numerical values

of the elements to be of the same order. To calculate the

element φ̂(x) on the left-hand-side of Equation 2 we need

to load the element φ(x) and the four neighboring elements

(φ(x + î), φ(x − î), φ(x + ĵ) and φ(x − ĵ)) from a 2-

dimensional grid.

In we assume consecutive iterations of the stencil opera-

tion on an array with φ elements that is aligned in memory

and elements are stored in lexicographic site order, then for

an architecture with wide vector units, a number of following

elements will not be aligned. Therefore, to vectorize this

operation, shuffle operations would be required to align

the appropriate elements at the right position of the vector

register.

B. SU(3) Multiplication Kernel

The second kernel we implemented is the component of

the Wilson Dirac equation which involves the multiplication

with the gauge-links, which are elements of the special

unitary group SU(3). As mentioned this is effectively a

multiplication of an array of complex 3×3 matrices u, with

an array of complex 3×4 ψ vectors (ψ fields are vectors

in color space). Complex number types, such as the C99

complex type, are usually stored as a structure or array of

two elements, with the real part in the first element and

the imaginary part in the second element. A complex multi-

plication therefore involves cross-terms, i.e. multiplying the

real part of the first operand with the imaginary part of the

second operand and vice-versa. If this operation is to be

vectorized, one therefore needs to reshuffle the operands’

real and imaginary parts.

IV. DATA LAYOUT OPTIMIZATIONS

A. The Short Implementation

The fact that the gauge-links are elements of the SU(3)

group has been exploited in lattice QCD applications to

reduce their memory requirements. Namely, by the definition

of an SU(3) matrix, that its Hermitian conjugate is its own

inverse: uu† = 1, one can reconstruct the ninth element from

the other eight. The advantage to this is that eight elements

align in memory, and therefore every such truncated, or

short, gauge-link will start on an aligned boundary. The

disadvantage is that one has to recompute the ninth element

of the gauge-link every time it is to be used. This data layout

can only be applied to SU(3) matrices, thus it is implemented

only for the SU(3) Multiplication kernel.

B. Data Padding

Padding is used regularly when requiring that every

element of an array of structures be aligned in memory.

We include a version with padding of the gauge-links for

completeness. We note however that an architecture with

potentially very large vector units, of a size multiple times
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the size of a gauge link, would prohibit padding as an

optimization technique. This is also SU(3)-specific imple-

mentation, thus it is only applied to the SU(3) Multiplication

kernel.

C. The Vector-friendly Ordering Technique

The simplest way of reordering data to allow easier

vectorization, is to change the order in which the indices

run. In our case we have an array of gauge-links which are

stored in memory with the color indices running fastest:

_Complex double u[NV][NC][NC];

where NV is the number of lattice sites and NC=3. Defining

the lattice sites to run faster however:

_Complex double u[NC][NC][NV];

would allow easier vectorization, with the restriction that

the number of lattice sites NV is a multiple of the vector

register length. This layout is vector-friendly, because the

inner-loop of the computation that works on lattice sites can

be easily unrolled and vectorized. We call this the Vector-
friendly Ordering (VFO) technique. The disadvantage is that

for large NV this technique is not optimal in data reuse, since

other data used in the computation must be retrieved three

times from memory, once for each NC iteration.

D. The Hopping Vector-friendly Ordering Technique

The Hopping Vector-friendly Ordering (Hopping VFO)

follows naturally from the requirement for cache locality of

VFO above. The idea is to re-order the data such that part

of the volume index NV runs faster. The extent by which it

runs faster depends on the vector width. For instance one

can define the data arrays as:

_Complex double u[NV/NW][NC][NC][NW];

where NW is the number of _Complex double elements

which fit in a vector register (e.g. for the Xeon Phi NW = 4).

The implications of this layout are more pronounced when

one considers the 2D stencil operation. In this case, one

would re-define the arrays from:

float phi[L][L];

to

float pho[L][L/NW][NW];

with the requirement that L is a multiple of NW. One then

re-orders the entries as such:

float phi[L][L];
float pho[L][L/NW][NW];
for(y=0; y<L; y++)

for(x=0; x<L/NW; x++)
for(w=0; w<NW; w++)

pho[y][x][w] = phi[y][w*L/NW + x];

This allows vectorizing the stencil operation along the w
component:

for(w=0; w<NW; w++)
pho_out[y][x][w] = a*pho_in[y][x][w]

+ b*(
pho_in[y+1][x][w] +
pho_in[y][x+1][w] +
pho_in[y-1][x][w] +
pho_in[y][x-1][w]);

Since the elements pho_in[y][x][w] for

w=0,1,2,...,NW-1 are maximally spaced apart in the x-

direction, the w loop can be unrolled and vectorized across

the fastest running index without requiring shuffles. The

only exception is when x is on a boundary, i.e. the case

when x=0 and x=L/NW-1. Only for these two cases

does one require shuffle operations, to impose the periodic

boundary conditions.

V. EXPERIMENTAL EVALUATION

Our hardware setup was an Intel Xeon Phi 7120P with

61 cores and 4 threads per core, totaling 244 threads. We

reserved one core for the operating system and thus used

the remaining 60 cores for the application execution in

Coprocessor-only mode. The coprocessor we used has a

total of 16 GB of main memory and runs at 1.238 GHz. To

cross-compile our benchmarks for the Xeon Phi we used the

Intel icc v.14.0.1 compiler with the -mmic flag indicating

the MIC architecture and the -O3 optimization flag that

includes auto-vectorization. For the GPU experiments we

used an NVIDIA Kepler K20m card with 2496 CUDA

cores. The total memory of the GPU card is 5 GB and

the working frequency is 706 MHz. To compile for the

GPU we used the nvcc NVIDIA compiler, v.5.5.0. The

performance metric we quote for the two kernels is sustained

bandwidth, that represents the number of bytes read and

written during the total calculation, divided by the execution

time. For performance reasons all our implementations use

one-dimensional arrays for storing the fermion and gauge

fields. The baseline shown in all the results of the two

kernels is the original parallel implementation of the kernel

with no vector optimizations.

In Figure 1, we present the results of the 2D Stencil
operator. Compared to the baseline, the auto-vectorization

of the compiler manages around a 6.6× bandwidth increase.

Our VFO technique seems to produce a slight overhead

when reordering the data that cannot be eliminated for up to

60 threads. When we use the SMT capabilities of the Xeon

Phi and increase the number of threads per core to 2 and

4, we manage to obtain as much performance as the auto-

vectorization of the compiler. This is due to the higher I/O

throughput achieved by hiding the memory latency through

the use of multiple threads.
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Figure 1. Performance of the 2D stencil with size L = 2048×2048 length
vectors, that is the outer dimension of the gauge-link array.

For this kernel we also implemented a version with

moderate optimizations for the GPU. The results show that

for a small number of threads the GPU performance is close

to the Xeon Phi but when we increase the number of threads

on both coprocessors, the Xeon Phi significantly outperforms

the GPU. A possible explanation is that the input size used

for these tests is not large enough for the GPU to hide all

memory latencies and also not large enough to efficiently

utilize all the CUDA threads available.

The SU(3) Multiplication kernel uses complex floating

point arithmetic, which means that each element of the

matrix has a real and an imaginary part, with each one being

a double-precision floating point number. In Figure 2, we

present the performance results of this kernel on the Intel

Xeon Phi. The auto-vectorization of the compiler in this case

does not perform because of the data dependencies involved

in complex arithmetic, which may hide auto-vectorization

opportunities from the compiler. To overcome this, we

implement and evaluate the data layout optimizations of

Section IV while keeping the vectorization flag of the

compiler ON.

In the Short implementation, where we remove one ele-

ment, we vectorize all operations including the calculation of

the missing element. We observe that this change leads to

a bandwidth increases of ≈1.4×. Although this technique

introduces additional operations re-computing the missing

element, the increased performance attained by the vector-

ization seems to be sufficient to hide the extra computation.

The same is observed for the Padding implementation, where

we pad the end of each u matrix in memory such that every

matrix begins on an aligned memory address. This method

out-performs the baseline scenario, by approximately the

same factor as the short implementation.

Applying the VFO ordering technique allows a more

straight forward vectorization of the kernels, with a signifi-

cantly smaller number of shuffle operations. This technique

introduces a significant penalty, performing more than 3×
worse than the baseline. When reordering the complex data

of the SU(3) kernel within this technique we inevitably
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Figure 2. Performance for the SU(3) Multiplication kernel for the largest
data set of our evaluation L = 3840×1024.
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Figure 3. Performance for the SU(3) Multiplication kernel for 240 threads
and varying the input size (L = Size of Input×1024).

reduce data re-use, and effectively increase the number of

cache misses, loosing both temporal and spatial locality of

the data. This becomes more obvious in Figure 3, where we

see the performance as a function of the problem size. We

therefore conclude that the overhead imposed by the loss of

locality in cache is greater than the gains achieved through

use of the vector processing.

The Hopping VFO technique aligns the data in vector

registers in such a way that distant data are packed within

the same register. This data layout is intended to on one

hand ease the vectorization of the codes by requiring less

shuffles in the way VFO does, and on the other hand retain

data locality such that the excessive cache misses observed

in VFO are mitigated. Using this technique we get an almost

2-fold increase in the bandwidth compared to the baseline

and this performance is stable across different input sizes as

shown by the results of Figure 3.

VI. RELATED WORK

There are various implementations of LQCD operators

in the literature that target different architectures. In this

section we concentrate on those relevant to accelerator-based

architectures. M.A. Clark et al. in [9], [10], present the

QUDA library which was used in this work, for performing
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calculations in lattice QCD on GPUs, leveraging NVIDIA’s

CUDA [11] programming platform. In a continuation of this

work, Ronald Babich et al. present the parallel implementa-

tion of the QUDA library for multi-GPU calculations [12],

that manages to increase the performance of both single-

and double-precision calculations on clusters with multiple

GPUs.

Simon Heybrock et al. in [13], propose a domain de-

composition for the LQCD Wilson-Clover operator with

single- and half-precision operations on the Intel Xeon

Phi coprocessor. Using domain-decomposition methods they

manage to reduce the data movement from and to main

memory as well as via the network. In [14], the authors

present their approach of implementing the Wilson Dslash

operator for the Intel Xeon Phi coprocessor while using

cache-blocking techniques and block-to-core methods for

increasing the performance, while an evolution of this work

for multi-node Xeon Phi clusters is presented in [15]. In

[16], the authors propose similar data layout transformation

techniques to avoid the stream alignment conflict problem

found in optimized implementations of stencil computations

on short-vector SIMD architectures.

VII. CONCLUSIONS

In this work we show that the performance of LQCD-

based applications can significantly increase on the Intel

Xeon Phi if moderate effort is devoted in optimizing the

data layout. Through our study we found that the compiler

auto-vectorization was limited to non complex arithmetic,

and was unable to automatically vectorize the code in

complex arithmetic kernels. We evaluated various methods

for manipulating the data to solve this problem and we

found that the Hopping Vector-friendly Ordering technique

allows one to efficiently vectorize the application. Using this

technique we can achieve ≈1.8× performance increase for

a kernel that uses complex data structures.
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