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Abstract—The current trend in processor design is to in-
crease the number of cores as to achieve a desired performance.
While having a large number of cores on a chip seems to
be feasible in terms of the hardware, the development of the
software that is able to exploit that parallelism is one of the
biggest challenges.

In this paper we propose a Data-Flow based system that
can be used to exploit the parallelism in large-scale many-
core processors in an effective and efficient way. Our proposed
system - TFluxSCC - is an extension of the TFlux Data-Driven
Multithreading (DDM), which evolved to exploit the parallelism
of the 48-core Intel Single-chip Cloud Computing (SCC) pro-
cessor. With TFluxSCC we achieve scalable performance using
a global address space without the need of cache-coherency
support. Our scalability study shows that application’s perfor-
mance can scale, with speedup results reaching up to 48x for
48 cores. The findings of this work provide insight towards
what a Data-Flow implementation requires and what not from
a many-core architecture in order to scale the performance.

Keywords-dataflow; many-cores; programming model; Data-
Driven Multithreading;

I. INTRODUCTION

Scaling the performance of an application can be achieved

by either improving the hardware, or developing more ef-

ficient software to solve the particular problem. To retain

the power-performance efficiency to an acceptable level

we are currently exploring parallel processing as the way

to scale performance. Consequently, the trend today is to

include more and more cores into the processor resulting

in what is known as a multi- and many-core processor.

From the hardware design perspective, the more parallel

units offered for execution, the higher the performance

that can be achieved. From the software design perspective

though, this new trend creates new challenges. To achieve

scalable performance in these new systems, programmers are

required to think parallel. This essentially means learning

new programming models and developing new algorithms

that exploit parallelism. Therefore, the solution to the scal-

ability of the performance depends on scalable hardware

with increasing number of computational units along with

efficient programming and parallel execution models that

hide the hardware complexity from the programmer.

Data-Flow is a natural paradigm for describing parallelism

using directed graphs based on the path of the data [1].

Nevertheless, the original Data-Flow implementations suf-

fered from serious limitations as they required specialized

hardware [2]. New hardware designs though, make the Data-

Flow model a possible solution for scaling the performance

of applications. Consequently, researchers have proposed

new alternatives based on this model that are able to exploit

the parallelism effectively. One such alternative is the Data-

Driven Multithreading (DDM) [3]. Following the footsteps

of the Data-Flow model it can exploit the maximum avail-

able parallelism of an application by exploiting data depen-

dencies, while at the same time overcomes overheads by

increasing the granularity of the execution blocks. In DDM

the synchronization part of the program is separated from the

communication part allowing it to hide the synchronization

and communication delays [4]. Different implementations of

the DDM model exist. Some implement the scheduling unit

in hardware as to minimize the effects of the overheads and

others in software as to guarantee portability of the platform

to any new hardware design.

The focus of this paper is to show how a software

implementation of the DDM model of execution can offer

performance scalability on a many-core architecture by

efficiently exploiting the parallelism and at the same time

relieve the programmer from the hardware details, such as

data communication. The complete software platform we

present in this work is based on the TFlux platform [5]. It

offers an environment for parallel execution on many-core

architectures that is able to scale without major hardware

requirements or programming effort. To test our implementa-

tion we use the Intel Single-chip Cloud Computer (SCC) [6]

that was developed by Intel for many-core software research,

as a representative for future many-core processors. Our

proposed system includes a source-to-source preprocessor

that takes as input programs in C, augmented with directives

that specify the threads and their dependencies, as well as,

a runtime system to handle the scheduling of the threads in

a Data-Flow manner. Our evaluation is performed on a real

Intel SCC system and our model is implemented in software

as a library that is linked to the application.
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Table I
TFLUX DDM PRAGMA DIRECTIVES

#pragma ddm startprogram
Define the start and the end of a DDM program

#pragma ddm endprogram
#pragma ddm block ID

Define the start and the end of a block of threads with identifier ID
#pragma ddm endblock
#pragma ddm thread ID kernel NUMBER Define the boundaries of a DDM thread with identifier ID and the

kernel NUMBER to execute on#pragma ddm endthread
#pragma ddm for thread ID

Define the boundaries of a DDM loop thread with identifier ID
#pragma ddm endfor
#pragma ddm kernel NUMBER Declare the number of kernels to be used
#pragma ddm var TYPE NAME Declare a shared variable with NAME and TYPE
#pragma ddm private var TYPE NAME Declare a private variable with NAME and TYPE

The contributions of this paper are as follows:

• TFluxSCC: The first DDM implementation for a many-

core processor;

• Evaluation of TFluxSCC on a real 48-core SCC system,

achieving up to 48x speedup;

• Identification of the characteristics that efficiently ex-

ploit the parallelism of a scalable architecture.

II. DATA-DRIVEN MULTITHREADING

Recently we have seen an increasing interest in the Data-

Flow model as a way to efficiently exploit the maximum

available parallelism of applications. DDM is a Data-Flow

model where the granularity of the Data-Flow code is

a thread and the synchronization part of the program is

separated from the communication part as to overcome the

synchronization and communication overheads imposed by

the dynamic scheduling process [3], [4]. DDM programs are

composed of Data-Driven Threads (DThreads) that contain

an arbitrary number of instructions. Within a DThread the

instruction execution follows the classic control-flow model,

thus allowing any other runtime or compile-time optimiza-

tions to be performed. The programming of the DDM

model is done explicitly by the programmer by defining the

DThreads in a program and the dependencies amongst them,

either by declaring a direct dependence on other DThreads

or by declaring the inputs and outputs of the DThreads.

This work is based on the TFlux implementation [5]

of the DDM model. We chose TFlux as it is a complete

platform that includes a programming environment for DDM

applications using compiler directives, a source-to-source

preprocessor that translates the application augmented with

the directives into DDM parallel code and a Thread Schedul-

ing Unit (TSU) that handles the Data-Flow scheduling of the

DThreads at runtime. An important advantage of TFlux is

that it is not built for a specific machine but rather works

as a virtualization platform for DDM program execution on

a variety of computing systems. Another reason we chose

the TFlux implementation is that the produced parallel code

from the platform is in ANSI-C which complies with the

supported programming languages for most systems, such

as the Intel SCC programming API used in this work.

Figure 1. The layered design of the TFlux system [5]

Using the TFlux directives, the programmer can define

the DThreads that form a DDM program along with their

dependencies. Figure 1 shows the layered design of the

TFlux system. The programmer uses the top layer to de-

velop DDM applications. This abstracts the details of the

underlying hardware. DDM applications are developed using

ANSI-C with DDM directives [7] as the ones shown in

Table I. The directives are used to define the code of the

DThreads and to express the dependencies between them.

In Figure 2 we show an example of how to program a

sequential application using TFlux directives. The code in

the figure is part of an actual DDM program that was used

for the evaluation in this work. The DDM source-to-source

preprocessor is used to parse the C+DDM directives code

and produce a C program that can be compiled with any

commodity C compiler. The executable produced invokes the

TFlux Runtime Support operations that allow the application

to execute as a DDM program.

TFlux also requires a TSU to enforce the Data-Flow

execution of the DThreads. The TSU’s task is to load the

synchronization graph of a DDM application and according

to the dependencies, initiate and schedule the execution of all

DThreads in a Data-Flow manner. In the first implementation

of DDM, the D2NOW [3], each processor needed to have

its own private TSU since the execution nodes were indepen-
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#pragma ddm s t a r t p r o g r a m
. . .
#pragma ddm b l o c k 1
. . .
#pragma ddm f o r t h r e a d 4 u n r o l l 1

f o r ( j = 0 ; j < 512 ; j ++)
{

f o r ( i = 0 ; i < 512 ; i ++)
yp [ j ] [ i ]+= c [ i ] [ j ] ∗ ( y [ j ]+ k3 [ j ] ) ;

}

#pragma ddm e n d f o r

#pragma ddm f o r t h r e a d 5
\ r e d u c t i o n sum + double t o t a l depends ( 4 )

f o r ( i = 0 ; i < 512 ; i ++)
{

i f ( ! i n i t F l a g 0 2 )
{

i n i t F l a g 0 2 =1;
f o r ( j = 0 ; j < 512 ; j ++)
{

k4P [ j ]= h ∗ ( pow [ j ]−( yp [ 0 ] [ j ]+ yp [ 1 ] [ j ] ) ) ;
}

}
you t [ i ] = y [ i ] + (2∗ k3 [ i ]+ k4P [ i ] ) / 6 . 0 ;
sum+= you t [ i ] ;
}

#pragma ddm e n d f o r

#pragma ddm e n d b l o c k
. . .
#pragma ddm endprogram

Figure 2. Code example of how to use TFlux directives in a program.

dent machines. In the TFlux implementation the TSUs were

unified in a single unit named the TSU Group. This unit is

logically split in n+1 parts. One part per core (totalling n) for

the core’s own TSU operations and one common part which

is located on a dedicated core and manages the common

operations of the TSU for all cores. In Section IV we show

how our implementation of the TSU combines ideas from

both the D2NOW and the original TFlux implementations.

III. INTEL SCC ARCHITECTURE

The need to optimize performance per watt has resulted

in the increase of the number of cores in processor chips [8].

Many light-weight cores will be replacing the few sophisti-

cated cores we have currently in multi-core chips, creating

the many-core chips with hundreds or more cores. In our

work we examine the Intel SCC experimental processor as a

48-core ’concept vehicle’ created by Intel Labs as a platform

for many-core software research [6].

The Intel SCC processor consists of 24 dual-core tiles

interconnected by a 2D-grid network as illustrated in Fig-
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Figure 3. Intel SCC top-level and tile top-level architecture

ure 3. These tiles are organized in a 6x4 mesh with each

one containing two cores with dedicated L1 and L2 caches

of 16KB and 256KB respectively, 16KB Message Passing

Buffer (MPB) for message storing travelling through the

network, a Traffic Generator (TG) for testing the perfor-

mance of the on-chip network, a Mesh Interface Unit (MIU)

connecting the tile to its’ network router and two test-and-set

registers.

The maximum main memory the current system can sup-

port is 64GB and the 32-bit memory addresses of the cores

are translated into system addresses by the MIU through

a lookup table (LUT). The main memory of the system is

located outside the chip and the access to it is achieved

through four on-chip DDR3 Memory Controllers (MC). The

SCC supports both distributed and shared memory models.

The system memory is composed of four regions. Each

cores’ private main memory (Private off-chip memory), the

systems’ global address space (Shared off-chip memory), the

Message Passing Buffer (MPB) used to store messages to

be sent through the network (Shared on-chip memory) and

the L2 cache of each core.

The Intel SCC is equipped with a large number of light-

weight processing units with low power consumption and

with multiple memory controllers serving them. Based on

the characteristics of the Intel SCC we understand that

future many-core processors will focus on energy-efficient

designs. Expensive, in matters of design- and operating-cost,

hardware support units will be avoided and other solutions

must be exploited. One example in the Intel SCC is the cache

coherency mechanism [9], where caching is only supported

for data allocated on the private address space. Techniques

like this though, have an impact on the performance and the

programming of new architectures.

Being an experimental processor, the SCC comes with
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a concept Programming API called RCCE that supports

the Single Program Multiple Data (SPMD) model of ex-

ecution. It supports C/C++ programming languages with

RCCE API extensions to implement the message passing

communication of the system. More information on the

RCCE communication environment and all the operations

supported can be found in [8].

IV. TFLUXSCC IMPLEMENTATION

Our goal in this work is to achieve performance scalability

of the DDM model using the TFlux Platform on the Intel

SCC processor. We also want to show that using the DDM

model of execution on the Intel SCC we are able to exploit

the performance even for simple scalable hardware. TFlux

uses compiler directives as to define DThreads and the

dependencies amongst them. Given that TFlux is an existing

platform, we maintained the programming style and syntax

for TFluxSCC. We used the global address space of the

SCC for storing application data. Thus, no communication

mechanism is necessary to exchange data between cores

as the hardware system itself will take care of this. This

way we manage to retain the programming directives of

TFlux unchanged as we don’t need to add extra information.

Therefore, this allows the portability of the already existing

applications.

Although the Intel SCC supports global address space,

there is no cache-coherency protocol. In order to ensure

correctness of the data coming from the global address

space, the SCC does not allow the use of the cache for

storing application data coming from the global address

space. The DDM model though, and consequently our

TFluxSCC implementation, doesn’t require cache coherency

as it doesn’t allow simultaneous access on shared data. In a

DDM program, data is shared through the input and output

of the threads as they are defined by the dependencies

declared by using the pragma directives. Consequently, at

each moment only one thread can access a specific data

structure on the global address space. Thus, caching global

address space data is possible when using TFluxSCC. To

ensure correctness, we flush the cache after the thread

completes its execution, as to guarantee that the shared data

is saved back to memory.

We were able to modify the SCC configuration (using a

modified Linux image, provided by the SCC platform) as to

allow the caching of data coming from the global address

space. We also modified the TFluxSCC runtime as to flush

the cores caches after writing data to the global address

space. To measure the impact on the performance imposed

by this technique we tested both scenarios and in Figure 5 we

present the speedup results for 48-cores. In the first scenario

(Uncacheable Shared Memory) we test all our applications

implemented in TFluxSCC without caching application data.

The second scenario (Cacheable Shared Memory) shows the
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Figure 5. Comparing speedup results of uncacheable against cacheable
shared memory on the Intel SCC

results when allowing the caching of the application data

coming from the global address space.

Conventional shared-memory parallel programming mod-

els require more sophisticated hardware components, that

in systems of 100s -1000s of cores would be both power

and performance inefficient due to the extra hardware and

the overheads imposed by the coherency protocol [10].

Using TFluxSCC we manage to guarantee correct execution

without major impact on the performance while at the same

time maintain hardware simple.

A. TSU Implementations

The TSU implementation in the TFlux Platform is a

semi-centralized implementation. This means that except

from the TSU thread, part of the scheduling operations are

executed by the application threads. This technique was used

as an optimization that reduces the overheads of the TSU

functionalities on a multi-core system [5]. Since there is

only one instance of the TSU structures in TFlux this needs

monitoring and locking of shared structures. Using shared

structures on systems with a large number of cores will

eventually create contention among the cores and locking

can possibly result in starvation. For this reason no locking

scheme is supported by the SCC.

In the original TFlux TSU (Figure 4(a)), the operation

that handles the update messages involving all application

threads is centralized. This means that the update messages

that notify a thread that is ready to execute is sent explicitly

by the TSU thread. In large-scale systems and in applications

with a large number of update messages this can become

a bottleneck to the performance due to contention in the

network.

What we propose in TFluxSCC is a non-centralized

runtime system that is able to scale and consume as few

resources as possible, thus reducing the overheads to a

minimum. In TFluxSCC we distribute the TSU functionali-

ties to each core in order to achieve scalability regardless

of the number of cores used. Also, we only allow for

193

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:25:43 UTC from IEEE Xplore.  Restrictions apply. 



Tile InlineTile 2-threadedMulti-core         Centralized

Core 1

L2 L2

Core 2

Router

L2

Core 1
Application

L2

Core 2
Application

Router

TSU

Application

TSU

Application TSU TSU

(b) (c)

Core 1

L2

Appli-
cation

(a)

Core 2

Appli-
cation

Core 3

Appli-
cation

Core 4

TSU

Figure 4. TSU Evolution: (a) Original TFlux TSU, (b) 2-threaded for TFluxSCC and (c) Inline for TFluxSCC

the TSU to take control of the execution unit at the time

needed and only for as long as it is needed, as to reduce

the runtime overhead to the minimum. In Figure 4 we

show the evolution process of the TSU from the original

TFlux implementation (Figure 4(a)) to what we propose for

TFluxSCC (Figure 4(c)).

In a first attempt to de-centralize the runtime system we

created one TSU thread for every core (Figure 4(b)): the

2-threaded implementation. This implementation leads to

one extra thread per core. As the SCC cores do not sup-

port hardware multi-threading, depending on the scheduling

policy, the OS will switch the execution from the application

to the TSU thread allowing the TSU to hold the execution

unit from the application thread. The TSU implements a

busy wait loop in the background until an update message

is ready to be send. Thus, in many cases the TSU will take

control of the execution unit without having any useful work

to do that will help the application progress. To find the

possible cost of this context switching, we control the time

that the TSU thread uses the execution unit. At runtime, we

deactivate the TSU thread for a certain amount of time by

adding a sleep call. This way we allow for the application

thread to take control of the execution unit for a longer

period of time and we also reduce the number of times

that the OS switches the execution from the application

thread to the TSU thread. By limiting the time that the

TSU thread uses the execution unit (sleep implementation)

we manage to reduce the total execution time from our

baseline implementation (2-threaded) as shown in Figure 6.

Although the sleep is effective, it can not be considered

for an implementation as the best sleep time varies with

the applications and can not be determined in advance.

Any runtime mechanism used to determine the best value

will impose significant overhead to the execution. While the

absence of multi-threading on the Intel SCC is a limitation,

it is also a factor of scalability of the hardware. The simpler

the cores are, the more that can be integrated on the same

processor.

To avoid the above restrictions and limitations we propose

the Inline implementation. In this implementation we inte-

grate the TSU functionality with the application thread as

shown in Figure 4(c). We remove the busy wait loop from

the TSU and call its’ operations at the end of the execution

of an application thread, which is the only time that the TSU

will have real operations to execute (send update messages to

consumers). This solution allows us to utilize the execution

unit of the core to the maximum. In Figure 6, we show the

execution time of the three approaches, normalized to the 2-
threaded implementation, for two applications. The results

observed verify what we discussed earlier.

In Figure 7 we show the execution time breakdown into

the time for the application. i.e. the time spent to execute

pure application code, and the time for the Inline implemen-

tation of the TSU, i.e. the time spent to execute the different

scheduling procedures, such as the update of the local TSU

structures after a thread execution, the exchange of update

messages with consumer threads on different cores. We also

test two different network frequencies to find out whether

the message exchange process of the TSU can be improved

by the current hardware. In our baseline scenario, the SCC

network was operating at 800MHz. We then increased the

network frequency to the maximum, which is 1600MHz and

observe that the TSU time remains constant. This means that

the time spent by the TSU for message exchanging in the

Inline implementation is not significant. In this Figure, we

also observe that the overall TSU overhead is small and

it reduces as we apply unrolling to the applications. This

happens because in DDM every loop iteration is considered

a separate thread, thus the more iterations we have, the more

threads we have to schedule. Using unrolling, we reduce the

total number of threads we have to schedule, thus reducing

the total time consumed by the TSU procedures.

B. Compilation Toolchain

As described in Section III, Intel SCC processor comes

with it’s own programming API, called RCCE. Therefore,
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Table II
EXPERIMENTAL WORKLOAD DESCRIPTION AND PROBLEM SIZES

Benchmark Source Description Characteristics Unroll Factor Problem Size
Small Medium Large

MMULT kernel Matrix multiply Compute+Memory-Bound 16 64x64 128x128 256x256
QSORT MiBench Total Array sorting Memory-Bound N/A 100K 200K 400K
QSORT* MiBench Partial Array sorting Memory-Bound N/A 100K 200K 400K

RK4 kernel Differential equations Compute-Bound 1 1024 2048 4096
TRAPEZ kernel Trapezoidal rule for integration Compute-Bound 256 30 31 32

FFT NAS FFT on a matrix of complex numbers Compute-Bound 1 32 64 N/A
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Figure 6. Execution time of the implementations of the TSU for 48 cores
normalized to the 2-threaded

we integrated the RCCE API into the TFluxSCC prepro-

cessor. We updated the DDM C source-to-source Preproces-

sor [7] in order to be able to generate code for the Intel

SCC Processor. The basic operations added on top of the

previous implementations of TFlux are the initialization of

the platforms’ API, the support for memory allocation on

the global address space and most importantly, the flushing

of a cores’ cache after writing data in the global address

space. This later operation is necessary for the model to

synchronize explicitly the cache contents to memory as to

ensure correctness, given that no hardware cache-coherency

is available.

Although the intended platform for our implementation is

different, we made sure that TFluxSCC can be programmed

in the exact same way as the original TFlux. This means that

the interface of TFlux (i.e. the directives in Table I) is kept

the same in the TFluxSCC implementation as well. This way,

the updated preprocessor provides backward compatibility

with the previous implementations of the TFlux Platform.

Using a predefined command line flag (scc), we can inform

the preprocessor that we want to produce code for the Intel

SCC platform. Thus, no change is needed to the previously

implemented applications.

V. EXPERIMENTAL SETUP

We have evaluated our implementation of TFluxSCC

using six different benchmarks. Three of them are kernels

that represent common scientific operations [11], two belong
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Figure 7. Application and TSU execution time breakdown for different
frequencies

to the MiBench [12] suite and one to the NAS [13] suite.

QSORT* is a subset of QSORT and represents the partial

sorting of an array. In QSORT* we remove the reduction

operation and measure only the fully parallel part of QSORT,

where each core sorts its’ own portion of the input array. The

benchmarks are briefly described along with their different

problem sizes in Table II. For our experiments we used three

different input problem sizes: Small, Medium and Large.

We measure execution time and in order to minimize the

statistical error, we executed each experiment ten times. The

results shown are the arithmetic average of the measurements

after excluding the outliers. The baseline execution for every

scenario is the best sequential execution of the benchmarks

on a single SCC core.

Our hardware setup was an Intel SCC experimental

processor, RockyLake version. The system has a total of

32GB of main memory and we used a balanced frequency

setting for our experiments of 800MHz for the tile, the

mesh interconnection network and the DDR3 memory and

Memory Controllers. The operating system used for the Intel

SCC cores was the Linux dcm kernel provided by Intel

SCC Communities repository that supports caching the data

coming from the off-chip shared-memory to L2 cache. To

cross compile our benchmarks for the SCC we used the

GCC v.3.4.5 compiler with the optimization flag O3. For

porting and executing the applications on the SCC we used

the RCCE v1.4.0 tool-chain [8]. Finally, since our study
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Figure 8. Performance scalability of TFluxSCC for different number of cores and input sizes

emphasizes on the scalability of the DDM model, all results

are reported as Speedup compared to the baseline execution.

VI. EXPERIMENTAL RESULTS

With this work we perform a scalability study of the

performance for applications with different characteristics.

In our workload we have included applications that are

embarrassingly parallel like QSORT*, applications that are

compute-bound like TRAPEZ and others that have a com-

bination of memory- and compute-bound nature, as well

as more complex dependencies among the different parallel

threads. We executed the applications using up to 48 cores

and with 3 different input sizes and present in Figure 8 the

speedup results compared to the best sequential execution.

The results in Figure 8 show a large speedup for most

applications. The application with the largest overall speedup

is TRAPEZ, which is an application that is compute-bound

and suffers no memory overheads. RK4, which has a con-

siderable number of threads and dependencies achieves also

a good speedup and thus it shows that the execution of

the TSU code does not incur in a large overhead for the

execution of the application. QSORT* shows very impres-

sive speedup, especially for the medium input size. The

reason that the speedup in this case exceeds 48 is that

the input size of QSORT* fits in the cache thus, creating

a super-linear speedup phenomenon. MMULT, that is both

a compute- and memory-bound application, shows smaller

but still large speedup. Finally, FFT and QSORT show the

smallest speedup of all applications. QSORT is split into

two phases. The first one is like QSORT* and thus has

linear speedup. The following phase combines the results

of all sorted parts as to build the complete sorted vector.

This is done as a reduction using the merge sort algorithm.

For this implementation we observed that a binary reduction

was too costly so we implemented a more optimized n-way

reduction, where at each step one thread combines the results

of 4 sorted portions and managed to get better performance.

To see if the data set size affects the performance results

we also tested the same applications with 3 different data set

sizes. For MMULT and RK4 we observe that as we increase

the size of the input data the speedup increases as expected

for compute-bound applications. TRAPEZ achieves linear

speedup for the all input sizes. For FFT, we could not scale

to the large input size as it required more memory space than

what is available from the global address space of the SCC.

For QSORT∗, which is a memory intensive application, we

observe a different behavior as for the larger set the speedup

is smaller than for the medium set. This is due to the fact

that while for the medium set the portions of data to sort for

the 48-core case are still fitting in the cache, for the larger set

this is not valid any longer. In QSORT we observe a small

difference in the performance while increasing the input size

but it is not able to scale more as the reduction phase is a

bottleneck for the performance.

Overall, the results show that we manage to scale well

with different applications on a real many-core system. The

fact that we manage to get 48x speedup for 48 cores, for

compute-bound applications shows that our runtime does

not add any overhead in applications that don’t have a

performance bottleneck in the algorithm.

VII. RELATED WORK

There are several projects currently, targeting the exploita-

tion of parallelism for many-core architectures. On the one

hand, the industry is moving closer to the development

of many-core processors with Intel proposing recently the
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Many Integrated Cores (MIC) Architecture [14] and the 48-

core SCC processor [6]. The MIC architecture has only

60 cores but exploits parallelism using wide vector units,

while the latter adopts the clustered architecture with simple

hardware design as to allow efficient scaling.

Totoni et al. in [15] use CHARM++ and MPI message

passing paradigms to implement parallel applications with

different characteristics in order to evaluate the Intel SCC

platform in matters of performance. They get speedup re-

sults of up to 32.7x for 48 cores and they propose more

sophisticated cores for the future many-cores in order to in-

crease the performance, mainly for the sequential execution.

RCKMPI [16] by Intel and SCC-MPICH [17] by RWTH

Aachen University implement customized MPI libraries aim-

ing to improve the message passing model with respect to

the SCC many-core architecture. These two implementations

use an efficient mix of MPB and DDR3 shared memory

for low-level communication in order to achieve higher

bandwidth and lower latency. In [18] the authors examine

various performance aspects of the SCC using a stream

benchmark and the NAS Parallel Benchmarks [13] bt and

lu. Their findings show that for these benchmarks the data

exchange based on message passing is faster than shared

memory data exchange and in order to improve the memory

access behaviour you must increase both the clock frequency

of the mesh network and the memory controllers.

Intel SCC avoids the hardware-based cache coherency and

introduces a software-oriented message passing based archi-

tecture instead. A software cache-coherency implementation

for the SCC system can act as another potential solution for

creating simpler many-core architectures, free of complex

hardware. As X. Zhou et al. propose in [19], Software

Managed Cache Coherence (SMCC) shows a compara-

ble performance to hardware coherency while offering the

possibility of having dynamically reconfigurable coherence

domains on the chip. The unnecessary complex hardware

support for applications with little sharing and the inability

to support heterogeneous platforms make the SMCC achieve

better use of silicon with significant reduction of hardware

budget.

In addition, we also have other architectures like the

GPUs’ [20] that have been around for some time and support

parallel execution with hundreds of cores. GPU’s offer large

computing power with low cost but the programming of

such engines is still trivial and the programmer must have

all the information of the underlying hardware in order

to achieve good performance. GPUs are special purpose

hardware units and the range of applications that offer

significant performance increase on a GPU system is limited

to data parallel applications. TFluxSCC on the other hand

targets a more conventional hardware approach and can be

used for a wider range of applications.

Programmability in many-core architectures is another

challenge the community has to address. OpenCL represents

a parallel programming standard especially for heteroge-

neous computing systems. SnuCL [21] is an OpenCL frame-

work for heterogeneous CPU/GPU clusters that provides

ease of programming for such systems. This framework

achieved high performance on a cluster architecture with

a designated, single host node and many compute nodes

equipped with multi-core CPUs and multiple GPUs. The

scalability though refers only to medium-scale clusters, since

large-scale clusters may lead to performance degradation

due to the centralized task scheduling model followed. Lee

et al. in [22] presents a new OpenCL framework, this

time for homogeneous many-cores with no hardware cache

coherency, such as the Intel SCC. The framework includes

a compiler and an OpenCL runtime which together with the

dynamic memory mapping mechanism preserve coherency

and consistency between CPU cores on the SCC architecture

with a small overhead.

TERAFLUX [23] was a large-scale project funded by

the European Union aiming to solve the challenges of pro-

grammability, manageable architecture design and reliability

of a 1000+ core chips by using the Data-Flow principles. The

idea was to develop new programming models, compiler

analysis and optimization technologies in order to build

a scalable architecture based mostly on off-the-shelf com-

ponents while simplifying the design of such Tera-device

systems.

Our implementation differs from other projects as we

propose a complete programming and execution platform,

for a many-core system, based on Data-Flow principles.

Using a software approach helps our implementation to

be easily ported to new architectures without the need of

specialized hardware.

VIII. CONCLUSIONS AND FUTURE WORK

In this work we exploit the Data-Flow model on a

many-core system. Specifically, we propose the TFluxSCC

platform that supports the programming and execution of

DDM applications on the Intel SCC processor. Using a set

of applications with different characteristics we were able to

show that the performance scales well and good speedup is

observed for most applications. It is relevant to notice that

these are executions of real applications on a real many-core

processor and TFluxSCC is the first software implementation

of the DDM model for a many-core processor.

We believe that TFluxSCC is suitable for future gener-

ations of many-core processors as it is a software imple-

mentation that can be easily configured to any many-core

architecture. It has limited demands on hardware support

that allows for a simpler design with a larger number of

execution units and thus increases the parallelism offered

by the hardware. Our implementation only requires a global

address space for storing application data and a selective

data-cache flush policy for data that were written and came

from the global address space. Cache-coherence is not a
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requirement and this leads to using simpler, more scalable

hardware.

In a future work we plan on scaling our implementation

to a larger number of cores. To do so, we are going

to use a simulation-based approach that will allow us to

experiment with different hardware components. We also

plan on expanding our evaluation benchmark suite to cover

more application domains and compare our results with

other parallel platforms and models.
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