
Scalability and Efficiency of Database Queries on Future Many-core Systems

Panayiotis Petrides,Andreas Diavastos, Constantinos Christofi, Pedro Trancoso

Department of Computer Science

University of Cyprus

Nicosia, Cyprus

Emails: {ppetrides, diavastos, christofi.c, pedro}@cs.ucy.ac.cy

Abstract—Decision Support System (DSS) workloads are
known to be one of the most time-consuming database work-
loads that process large data sets. Traditionally, DSS queries
have been accelerated using large-scale multiprocessors. In
this work we exploit the benefits of using future many-
core architectures, more specifically on-chip clustered many-
core architectures. To achieve this goal we propose different
representative data parallel versions of the original database
scan and join algorithms. We also study the impact on the
performance when on-chip memory, shared among all cores, is
used as a prefetching buffer. For our experiments we study the
behaviour of three queries from the standard DSS benchmark
TPC-H executing on the Intel Single chip Cloud Computer
experimental processor (Intel SCC). Our results show that
parallelism can be well exploited by such architectures and
how important it is to have a balance between computation
and data intensity. Moreover, from our experimental results
we show that performance improvement of 5x and 10x for the
corresponding query implementation without data prefetching.
Finally we show how we could efficiently use the system in
order to achieve high power-performance efficiency when using
the proposed prefetching buffer.

I. INTRODUCTION

The multi-core architecture is the de-facto standard in

processor design. This architecture offers the benefit of

an increased degree of parallelism to provide better per-

formance, without the drawbacks of previous monolithic

designs, such as high power consumption and complex de-

sign. As technology improves, the integration level increases

leading to an increase in the number of cores per chip.

While this results in a further increase of the degree of

parallelism, it may not necessarily lead to improved perfor-

mance, even when considering highly parallel applications.

The increasing number of processing units per chip results

in a higher demand for “feeding” those units with both

instructions and data. At the same time, neither the number

of pins on the chip, nor the links to memory improve at the

same rate as the number of cores. Moreover, the complexity

of the interconnection network of large-scale multi-core

architectures increases with the number of cores. The above

mentioned multi-core issues result in limiting the scalability

in terms of number of cores of these architectures. The

proposed large scale many-core architecture by Intel, also

known as the Intel SCC [1] addresses the above limitations.

Database applications are of the most demanding work-

loads. More specifically, Decision Support Systems (DSS)

database applications combine the processing of large data

sets along with the computation of statistical information

extracted from data. Our goal in this paper is first to

show the advantages that a future clustered many-core

architecture, like the Intel SCC experimental processor [1],

could have in a large scale data center that handles DSS

applications. Secondly, we show the benefits of prefetching

on the studied workloads when a shared on-chip memory

is used as a prefetching buffer. Finally we present the

power-performance efficiency analysis of the system for the

different query implementations.

In order to achieve our goal we analyzed the performance

of the basic database algorithms parallelized using the

RCCE programming API provided for the Intel SCC. We

have created different implementations for the data parallel

sequencial scan, nested-loop and hash join query algorithms.

For our implementations we also studied the impact on

performance when we use a shared on-chip memory as

a prefetching buffer. The algorithms are the basis for the

execution of standard representatives DSS queries taken

from the TPC-H benchmark suite [9]. We have selected

real database workloads, which represent different database

algorithms, and evaluate their performance on a real system,

the Intel SCC experimental processor, using our proposed

method of data prefetching. Our results show performance

improvement by factors of 5x to 10x when data prefetching

is used. Moreover, with a small performance loss we gain

high benefits in power consumption resulting to high power-

performance efficiency.

The rest of the paper is organized as follows: Section II

describes the architecture of what we consider a scalable

many-core architecture, Section III describes the database

workloads selected and the different query algorithms im-

plementations, Section IV shows the experimental setup and

Section V analyzes the observed results. Section VI presents

the relevant related work, and finally in Section VII we

present the conclusions of this work.

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.14

24

2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2013.14

24

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:09:00 UTC from IEEE Xplore. Restrictions apply.

II. FUTURE SCALABLE MANY-CORE ARCHITECTURES

The Intel SCC experimental processor is a 48-core ‘con-

cept vehicle’ created by Intel Labs as a platform for many-

core software research [1]. This processor consists of 24

dual-core tiles interconnected by a 2D-grid network. The

tiles are organized in a 6x4 mesh with each tile containing:

• Two P54C cores with 16KB L1 and 256KB L2 cache

dedicated to each core;

• A 16KB Message Passing Buffer (MPB)for storing

messages to be sent to other cores (8KB per core);

• A Traffic Generator for testing the performance capa-

bilities of the mesh network;

• A Mesh Interface Unit (MIU) to connect to the network;

The maximum main memory the system can support

is 64GB. The 32-bit memory addresses of the core are

translated into system addresses by the MIU through a

lookup table (LUT) [7]. The systems’ main memory is

located outside the chip and four DDR3 Memory Controllers

(MC) are used to move data on and off chip. In Figure 1

we present an overview of the SCC Memory Architecture

and how the programmer can view the system and the

core’s memory through the RCCE message passing API [7].

The SCC supports both distributed and shared memory

programming models and the systems’ memory is configured

and separated in four regions:

• Private off-chip memory: Each core’s LUT is config-

ured such that a specific region of the off-chip DRAM

(equally divided to all) is only accessible by that core.

• Shared off-chip memory: This region of the off-chip

DRAM is mapped by all LUTs and all cores have direct

access to it through any MC. These data are not cached

as the system does not provide cache-coherence;

• Shared on-chip memory: Also called Message Passing

Buffer (MPB), this on-chip SRAM is cached in the L1

caches of the cores;

• L2 cache: used only by the private off-chip memory

Figure 1. Intel SCC Memory Architecture as used by the programmer
through the RCCE message passing API

In this work we study how we could use the shared on-

chip memory as a prefetching buffer. More specifically we

study how we could store data for all cores in this buffer in

order to be used when needed. Therefore we minimize the

off-chip memory accesses and eviction of useful data from

L2 caches. We use the MPB in two ways: (i) as a whole,

where each core writes only to its’ own MPB and reads from

all and (ii) as 48 different buffers, where each core writes

and reads only to and from its’ own MPB.

OFF-CHIPON-CHIP

.
.
.

CPU0

L1
16KB L2

256KB

Each core writes to its own
MPB

STEP 1

Each core reads from its own
MPB

STEP 2A

8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1
16KB L2

256KB

CPU46

L1
16KB L2

256KB

CPU47

L1
16KB L2

256KB

Cores

.
.
.

CPU0

L1
16KB L2

256KB8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1
16KB L2

256KB

CPU46

L1
16KB L2

256KB

CPU47

L1
16KB L2

256KB

Cores

Q6

Q6

.
.
.

CPU0

L1
16KB L2

256KB8KB

8KB

8KB

.

.

.

8KB

8KB

0

1

2

46

47

MPB

CPU1

L1
16KB L2

256KB

CPU46

L1
16KB L2

256KB

CPU47

L1
16KB L2

256KB

Cores

Each core reads from all MPBs

STEP 2B

Q3, Q12

Q12

0

1

2

.

.

.

46

47

DRAM

Figure 2. Description of data prefetching using the MPB.

III. DATABASE WORKLOADS AND IMPLEMENTATIONS

For our work we focus on the execution of the basic

database algorithms and their parallel implementation. As

such, the queries analyzed in this work were implemented

as programs that execute the operations determined by the

queries and their results were validated. We have ported

3 different queries from TPC-H benchmark suite [9] of

different complexity and demands. More specifically we

ported Queries 3, 6 and 12 [10], from now on referenced

as Q3, Q6 and Q12. We format the processing data in two

ways in order to evaluate different implementations of the

query algorithms. In the first format data are stored row-

wise, i.e. all attributes of a particular record are stored in the

same row of a two-dimensional array. Let’s consider a table

which is composed of records containing three attributes:

attr1, attr2, and attr3. For each record a new row is created

that stores all its attributes. The second format is hashing

the data according to the key attribute on which tables are

joined, creating discrete linked lists of records based on the

tables’ attribute on which join operation is performed.

A. Data-Parallel Sequential Scan (DPSS) and Parallel Join

Given the data layout as presented above, for this work,

we use the simple sequential scan algorithm as to exploit

both load balancing and locality while traversing the data.

In our algorithm, all records are traversed and the records’

attributes are checked against a certain condition. The con-

dition may be a simple attribute comparison or a complex

boolean function. We have mapped this operation to the Intel

2525

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:09:00 UTC from IEEE Xplore. Restrictions apply.

SCC by implementing the condition to be tested and by

sending to each core the input parameters which are the

data streams that are used to evaluate the scan condition.

In this work we parallelize two join algorithms: nested

loop and hash join. In order to perform the nested loop

join, we compare each record of the outer loop with all the

records of the inner loop in an iterative way. Parallelization

is achieved by splitting the data of the outer loop to all

cores. Regarding the hash join, the operation is performed

on each lists’ key attribute and if the condition is satisfied

then we proceed for examining all its records. Parallelization

of the hash join implementation of the queries algorithms is

achieved by splitting the data in the first level of join by

splitting the first Table among cores.

����

������

������

������

������

	�����

�����

������

������

�����

�������

�� �� �� �� �
� ��� ���

�
�
�
�
�
�
�
�

��	
�����������

�����
��������������

��������������������� �������������������������������������

���� ��������� �!������������������

�!���������������������������������� �!� ���������

�!� �������������������������

Figure 3. Normalized scalability of Q3 and Q12 query.

B. Data Prefetching

In order to use data prefetching and minimize the number

of off-chip memory accesses we use the MPB of the system.

To achieve this we implemented the previously mentioned

algorithms using the MPB as a prefetching and storing

buffer for most commonly used data, in order to optimize

the performance. Data fetched or read from the MPB are

controlled at user level specifying which data are to be used.

For the Q6 query which is a simple scan operation, we

used the MPB of each core to fetch and store portions of

data, 8KB long, from main memory. From Figure 2, in Step

1 each core copies data from the off-chip main memory

to its’ local MPB and in Step 2A it copies those data to

its’ L1 cache for calculation. These two steps are iterative

steps until all data are processed. For the Q12 query we

use the data prefetching scheme only for the nested-loop

join implementation. The reason that we could not use the

prefetching on the hash-join implementation is related to the

organization of the data and that if we moved data from one

table to the MPB then the hashing implementation would no

longer exist. On the other hand if we move the hash table

into the MPB we would still need to go off-chip in order to

access the data directed by the hash table (currently located

in the main memory). This would result in a larger overhead,

minimal cache misses reduction and eviction of necessary

data from L2 cache, since main memory is cached in L2.

For the nested-loop join algorithm of Q12 we use the MPB

to store data from the inner-most table. From Figure 2, each

core will copy data to its’ local MPB (Step 1) and then

each core will read and perform calculations on data from

all the MPB chunks (Step 2B). Step 1 and 2B are iterative

because data cannot fit in the total of 384KB of the systems’

MPB. For the Q3 query we used the data prefetching on

both nested-loop join and a hybrid implementation of hash-

join and nested-loop join. For the nested-loop algorithm we

store the inner-most table in the MPB. This decision was

made since it is the table that is most frequently used which

would mean a significant reduce of the last level cache

misses and it also has the smallest size and in our case

could fit for both input sizes in the MPB of the system. For

the hybrid implementation, where we use both hash-join and

nested-loop join, we perform the hash-join operation for the

first join operation and for the records satisfying the query

condition we perform a nested-loop join. In Figure 2 Steps

1 and 2B depict this implementation showing that Step 1 in

Q3 will only be executed once and each core will copy a

portion of data to its’ local MPB. In the case that data do

not fit in the MPB the algorithm will become iterative and

continue fetching data from main memory just as it happens

with Q12.

�����

������

������

������

������

�������

�������

�� �� �� �� ��� ��� ���

�
�
��

�
��
	

�
��

��
�
�
�
��
��

��

����
��������
��

��������� ��	
����

Figure 4. Data-parallel sequential scan (Q6) normalized execution time
and breakdown.

IV. EXPERIMENTAL SETUP

For the evaluation of our work we used the Intel SCC

experimental processor, RockyLake version. The operating

system used for the Intel SCC cores is the default Linux

kernel provided by the RCCE SCC Kit 1.4.0 which was

used for porting the applications as well. The workloads

used for our work were selected from the TPC-H benchmark

suite [9] using different input sizes, in order to study their

performance scalability, generated using the dbgen tool. The

input sizes 0.01 and 01 as well as the number of tables

used for each query execution are: (i) Q3 use of 3 Tables of

total size of 4.24MB and 93.56MB, (ii) Q6 use 1 Table of

size 4.24MB and 93.56MB and (iii) Q12 use of 2 Tables of

total size 3.74MB and 91.14MB. For calculating the power

consumption of the chip we developed an application that

2626

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:09:00 UTC from IEEE Xplore. Restrictions apply.

measures the power consumption using the same technique

used by the SCC GUI performance meter. For our experi-

ments we scaled the frequency of the cores to three different

frequencies: (i) 100MHz, (ii) 266MHz and (iii) 533MHz. In

order to calculate the power-performance efficiency of the

system we have normalized the power and execution time

product of the different implementations to the product of

the single core execution of the base line scenario of each

query executing on the 533MHz.

����

������

������

������

������

�������

�������

�������

�������

�� �� �� �� ��� ��� ����
�
��
�
��
��
�
�	
�

�
��
	
�
�
�
��
�
�
��
�
�
��
�
�
��
�

���
�����������

�"#������������������$#%%���&� �"#������������������
����	����������$#%%���&�

�"#�����������$#%%���&� �'������������������$(''���&�

�'������������������
����	����������$#%%���&� �'�����������$#%%���&�

�'����������������������������
����	����������$#%%���&�

Figure 5. Normalized power-performance efficiency of Q3 and Q12 query.

V. EXPERIMENTAL RESULTS

In our first analysis we compare the performance be-

haviour of the different queries algorithms executed on the

Intel SCC experimental processor as described in Section III

and study their scalability for the target architecture. More-

over, we study how the data prefetching scheme proposed

can improve their performance. We present the results for

533MHz cores frequency due to the limited space available,

even though 266MHz and 100MHz show the same behavior.

In Figure 3 we present the performance behavior and

scalability of the different implementations of Q12 and Q3

query. The execution times are normalized to the corre-

sponding execution of the nested-loop join implementation

for a single core. Our results show that for Q12 query the

hash join algorithm outperforms the nested-loop join im-

plementation by a factor larger than 10x. This performance

difference can be explained from the way data are mapped

and the efficiency of the hash join implementation. The

second important observation is when we use the prefetching

scheme for the nested-loop join algorithm we observe an

improvement up to 5x. In particular we prefetch data to

MPB and these data are stored without being influenced

from evictions of L2 cache, therefore data reusage can

be achieved. Q12 scalability shows that nested-loop join

(with or without data prefetching) scales well whereas hash

join implementation is stable. Hash join implementation

algorithm complexity is limited and data transfers dominate

the computation time, in a ratio of 1:20 computations over

data transfers, resulting in no performance improvement as

the number of cores increases. As for Q3 scalability the exe-

cution times are normalized to the corresponding nested-loop

join implementation on a single core. Our first observation is

that the nested-loop join implementation using data prefetch-

ing does not improve the performance compared to the

implementation without data prefetching. This is explained

from the fact that the table stored in the MPB can fit in

the L2 cache of the core compared to the limited size of the

MPB. This results in higher overheads on fetching data from

the main memory to the MPB until all data are processed.

In the case of scenarios with 4,8 and 48 cores, records are

equally divided among cores, but the number of each cores

records that satisfy the condition varies among cores in an

average of 20%. In addition data chunks of 8KB are always

read from MPB regardless if they satisfy or not the where

clause condition. For the nested loop-join implementation

data from main memory will only be read until the where

condition is satisfied. The most important observation is the

fact that the hybrid implementation of Q3 using first hash

join and the data that satisfy the condition are then passed

to a nested-loop join. This implementation shows important

performance improvement as a result of gaining the most

from both the hash join implementation and the prefetching

scheme. In Figure 4 we present the normalized execution

time of the data-parallel sequential scan implementation for

Q6. The execution time is normalized to the execution time

of the corresponding sequential scan on a single core. Due

to the simplicity of the query algorithm and the fact that no

data reuse is observed there is no performance improvement

using the proposed prefetching scheme.

����

����

����

����

����

����

����

����

����

�� �� �� �� ��� ��� ���

�
�
��
�
��
��
�
�	
�

�
��
	
�
�
�
��
�
�
��
�

�
��
�
�
��
�

���
�����������

������������������)�������� ������������������
����	����������)��������

Figure 6. Normalized power-performance efficiency of Q6 query.

Another aspect of our work is to study the power-

performance efficiency of the executed query implementa-

tions on the Intel SCC research processor for different core

frequencies. As defined earlier the higher the results the

better for the different scenarios investigated. We depict the

most relevant results. In Figure 5 we present the power-

performance efficiency results of Q3 implementations using

as a baseline the nested-loop join implementation without

data prefetching. Our results show that we can achieve

high power-performance efficiency if we use our hybrid

implementation which consists of hash and nested-loop join

using prefetching even if we scale the frequency of cores to

266MHz. In Figure 5 we also present the power-performance

2727

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:09:00 UTC from IEEE Xplore. Restrictions apply.

efficiency results of Q12 implementations using as a baseline

the nested-loop join implementation without data prefetch-

ing. Our results depict that high power-performance effi-

ciency, increased by a factor of up to 1400, can be achieved

using the hash join implementation of Q12 even if we

scale cores’ frequency to 266MHz. From our results we can

conclude that up to 4 cores the power-performance efficiency

of the selected implementation remains stable and afterwards

reduces. Therefore we can achieve higher system execution

efficiency if we consider executing multiple instances of

the same implementation in fewer cores per instance. This

applies for Q6 as well as depicted in Figure 6.

VI. RELATED WORK

Different works study the performance evaluation and

optimization of database workloads. Porting and evaluating

the performance of such workloads in different systems is

being of a large interest due to the fact that large data centrs

are executing such workloads and performance and power

efficiency is of their most interest. Data prefetching is a

technique widely used for reducing the memory latencies by

fetching data to the processors cache before it is requested

in order to avoid misses that would otherwise occur. Data

prefetching can be done automatically in hardware [6],

where the prefetcher predicts the next data to be requested,

or in software where data requests are explicitly placed

by the programmer of the compiler in the code [3]. An

example of data prefetching for accelerating the execution

of database workloads is in [5]. Pre-execution [4] is an

alternative prefetching mechanism using an extra thread

called helper thread that executes portions of the code ahead

of the execution threads. Trancoso et al [8] investigated the

acceleration of decision support queries when executed on

Cell/Be and GPUs using Rapidmind as a common platform.

In our work we are studying the performance and paral-

lelism scalability of database queries algorithms using dif-

ferent techniques in order to optimize their performance like

data prefetching. Moreover, power-performance efficiency

analysis of database algorithms using different implemen-

tations is presented. Finally our experiments were executed

on a representative many-core architecture platform, the Intel

SCC, and we show how the selected workloads can be

benefit in such architectures.

VII. CONCLUSIONS

Database applications are of the most demanding work-

loads. We have ported three different queries from the TPC-

H benchmark suite on the Intel SCC experimental processor

and we have study their performance behaviour when data

prefetching is applied using the on-chip shared memory

of the system. Our results were very encouraging for the

use of data prefetching for future large-scale many-core

processors even for demanding database applications. We

observed a performance improvement by factors of 5x to

10x when data prefetching is used. Finally, from our analysis

we show that with a small performance loss we achieve

high benefits in power consumption resulting in high power-

performance efficiency. Our results show that in the case of

simple query algorithms scaling down the systems’ cores

frequency and reducing the number of cores (executing the

respective implementation) can result in both high power-

performance efficiency and throughput.

ACKNOWLEDGMENT

The authors would like to thank Intel Labs for lending

the Intel SCC research processor.

REFERENCES

[1] J. Howard et al. A 48-core ia-32 message-passing processor
with dvfs in 45nm cmos. In Proceedings of the International
Solid-State Circuits Conference, Feb, 2010.

[2] N. Ioannou et al. Phase-based Application-driven Hierarchical
Power Management on the Single-chip Cloud Computer. In
Proceedings of the 20th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 131–
142, 2011.

[3] D. Koufaty and J. Torrellas. Compiler support for data
forwarding in scalable shared-memory multiprocessors. In
Proceedings of the 1999 International Conference on Parallel
Processing, ICPP ’99, pages 181–, Washington, DC, USA,
1999. IEEE Computer Society.

[4] C.-K. Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading pro-
cessors. In Proceedings of the 28th annual international
symposium on Computer architecture, ISCA ’01, pages 40–
51, New York, NY, USA, 2001. ACM.

[5] K. Papadopoulos, K. Stavrou, and P. Trancoso. Helpercoredb:
Exploiting multicore technology to improve database per-
formance. Parallel and Distributed Processing Symposium,
International, 0:1–11, 2008.

[6] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream
buffers. In Proceedings of the 33rd annual ACM/IEEE inter-
national symposium on Microarchitecture, MICRO 33, pages
42–53, New York, NY, USA, 2000. ACM.

[7] M. Timothy G. et al. The 48-core scc processor: the pro-
grammer’s view. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking and Storage Analysis, April, 2007.

[8] P. Trancoso, D. Othonos, and A. Artemiou. Data parallel
acceleration of decision support queries using cell/be and gpus.
In Proceedings of the 6th ACM conference on Computing
frontiers, CF ’09, pages 117–126, New York, NY, USA, 2009.
ACM.

[9] Transaction Processing Council. TPC Benchmark H (Decision
Support) Standard Specification Revision 2.6.1. June 2006.

[10] P. Petrides, A. Diavastos and P. Trancoso. Exploring Decision
Support Queries on Futured Many-Core Architectures. In
Proceedings of the Third Many-core Applications Research
Community (MARC) Symposium, pages 81-84, 2011.

2828

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:09:00 UTC from IEEE Xplore. Restrictions apply.

