
LDPC Decoding on the Intel SCC

Andreas Diavastos, Panayiotis Petrides, Gabriel Falcão∗, Pedro Trancoso

Department of Computer Science ∗Instituto de Telcomunicações,
University of Cyprus, Dept. of Electrical and

Nicosia, Cyprus Computer Engineering
Emails: {cs06da1, csp7pp5, pedro}@cs.ucy.ac.cy University of Coimbra, Portugal

Email: gff@co.it.pt

Abstract

Low-Density Parity-Check (LDPC) codes are powerful
error correcting codes used today in communication stan-
dards such as DVB-S2 and WiMAX to transmit data inside
noisy channels with high error probability. LDPC decod-
ing is computationally demanding and requires irregular
accesses to memory which makes it suitable for paralleliza-
tion. The recent introduction of the many-core Single-chip
Cloud Computer (SCC) from Intel research Labs has cre-
ated new opportunities and also new challenges for pro-
grammers that wish to exploit conveniently the high level
of parallelism available in the architecture. In this paper
we propose three different implementations: a distributed,
a shared and a multi-codeword implementation, for LDPC
decoding algorithms that explore the Intel SCC scaling op-
portunities. From the experimental results we observed
that the distributed memory model couldn’t scale due to the
large number of messages exchanged by the parallel ker-
nels, while the shared memory model had a limited scaling
due to the overhead added by the uncacheable shared mem-
ory. On the other hand, the multi-codeword implementation
scales almost linearly achieving a relative throughput of 28
for 32 cores.

1. Introduction

The inclusion of multiple cores in the same chip has

become the new de-facto standard for the processor archi-

tecture. This multi-core approach has resulted as a solu-

tion to the power- and complexity-walls of previous mono-

lithic single core processors. The continuous advances in

technology result in the integration of more and more de-

vices on the same chip. Therefore, more cores are being

added to the processors. Soon we will be able to have

hundreds of cores in a single chip. These new architec-

tures, also known as many-core architectures, offer a sig-

nificant performance and power benefit over previous ones,

but on the other hand lead to some serious challenges. In

order to scale to large numbers of cores the architectures

need to be simple, so large-scale many-core processors will

not have as many shared resources and most probably will

not support hardware cache-coherency. In addition, large-

scale many-core processors will have limited access to ex-

ternal main-memory and the cores themselves will be sim-

ple compute engines. Nevertheless, in order to keep pro-

grammability within acceptable ranges, it is desirable to

support a standard ISA such that it may be possible to exe-

cute legacy codes without major changes. Intel has recently

proposed the Many Integrated Core (MIC) Architecture [8]

and the Single-chip Cloud Computer (SCC), which contains

48 simple Pentium cores. Given that the industry has proven

that technically it is possible to build such large-scale many-

core processors, the challenge is on exploiting the available

parallelism in an efficient and effective way. In this study

we use the Intel SCC processor to address these challenges

in future many-core architectures to harvest the available

parallelism on a widely used computation and communica-

tion intensive algorithm.

Low-Density Parity-Check (LDPC) codes have been

proposed in the 1960s [5] and recaptured the attention of

academia and industry in the late 1990s [10]. They repre-

sent powerful error correcting codes (ECC) used for a more

error-free transmission of data through noisy and high er-

ror probability channels. They can achieve a performance

close to the Shannon limit and for that reason they have been

adopted today in many modern communication and storage

standards [2, 3, 11]. Binary LDPC codes are linear (N,K)
block codes defined by sparse parity-check matrices of di-

mension (N −K)×N . They can be represented by bipar-

tite Tanner graphs [13] where Bit Nodes (BN) communicate

with Check Nodes (CN) they are connected to. The decod-

2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing

978-0-7695-4633-9/12 $26.00 © 2012 IEEE

DOI 10.1109/PDP.2012.79

57

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

ing part of the system uses belief propagation algorithms

that propagate messages between nodes linked by common

edges to infer the probability of a given input bit being 0 or

1. One such algorithm is the well-know Sum-Product Al-

gorithm (SPA), which is adopted under the context of this

paper [12, 15].

Since LDPC decoders demand very intensive computa-

tion and irregular memory accesses, until recently they have

been exclusively developed using VLSI hardware [1, 2, 11]

in order to achieve high throughput real-time decoding. But

the phase preceding the ASIC design is also a fundamental

part of the process. It consists of developing good LDPC

codes and simulate their coding performance, which ba-

sically consists in calculating the corresponding Bit Error

Rate (BER) curves. Depending on the code length and

rate, these simulations can take weeks to months to com-

pute on a conventional CPU for evaluating the coding per-

formance of LDPC codes able of guaranteeing extremely

low BER values. Recent advances in parallel computing

architectures such as the Compute Unified Device Archi-

tecture (CUDA) [7] have made LDPC decoders a reality on

GPUs [4, 9] and parallel kernels have also been proposed

for the Cell/B.E. [3].

This paper proposes three different strategies for using

the SPA to perform LDPC decoding on the 48 core Intel

SCC: the Distributed Parallel Decoder, the Shared Parallel

Decoder and the Parallel Multi-codeword Decoder. From

the experimental results we show that the target architec-

ture achieves scalable parallelism if the use of memory and

communication models are accommodated efficiently. For

the LDPC decoding we achieve this efficiency with the

multi-codeword implementation which scales almost lin-

early, achieving a relative throughput of 28 for 32 cores.

Even though the results have been obtained for the SCC,

this is without loss of generality as the SCC is a good rep-

resentative of future large-scale many-core processors.

The paper is organized as follows. Section 2 addresses

the properties of the SPA LDPC decoding algorithm and

the Tanner graph representation that illustrates message-

passing requirements. Section 3 describes the Intel SCC

architecture, namely the memory hierarchy of the system

and the Programming API. Section 4 addresses the paral-

lel kernels developed for LDPC decoding on the SCC and

the different parallel approaches that we have followed un-

der the context of this work in order to obtain the desired

scalability performance analysis. Section 5 presents some

experimental results and Section 6 concludes the paper.

2. Belief Propagation

Belief propagation, which is also known as the SPA, con-

sists of an iterative algorithm [15] used in information the-

ory that calculates joint probabilities on graphs. It is typ-

ically used in a vast set of domains and applications such

as channel coding and stereo vision. One of these applica-

tions includes binary LDPC codes where the SPA is used

for inference calculation over bipartite graphs that apply

probabilistic techniques to put a bound to the deviation of

a random variable from its expected value. Given a prob-

ability graph, message-passing procedures between neigh-

boring nodes, denoted by two nodes connected by an edge,

allow all vertices to make a contribution to update the be-

liefs in the graph in order to infer the correct codeword.

The structure of the graph is defined by matrix H where

all edges are identified.

2.1. LDPC Decoding

The SPA calculates the maximum a posteriori
probabilities of vertices in a graph [15]. Given a

(N,K) binary LDPC code, we assume Binary Phase

Shift Keying (BPSK) modulation, which maps a

codeword c = (c0, c1, c2, · · · , cn−1) into a sequence

x = (x0, x1, x2, · · · , xn−1), according to xi = (−1)ci .
Then, x is transmitted through an additive white Gaussian

noise (AWGN) channel, producing a received sequence

y = (y0, y1, y2, · · · , yn−1) with yi = xi + ni, where

ni represents AWGN with zero mean and variance σ2.

Algorithm 1 illustrates the SPA applied to LDPC decoding

and it mainly consists of two distinct horizontal and vertical

computationally intensive kernels defined by (1), (2) and

(3), (4), respectively. Kernel 1, also defined as Horizontal

Processing, calculates the message updates from CNm to

BNn, by performing accesses to H in a row-major order.

These obtained messages indicate the probability of BNn

being 0 or 1. Kernel 2, which is also known by Vertical

Processing, updates messages sent from BNn to CNm and

they consider accesses to H in a column-major order. After

Kernel 2 concludes, in (5) and (6) the a posteriori pseudo-

probabilities are calculated and finally in (7) is performed

hard decoding to obtain the decoded word ĉ at the end of an

iteration. This iterative procedure automatically ends if the

decoded word ĉ verifies all parity-check equations of the

code (ĉHT = 0), or if the maximum number of iterations

(I) is reached.

2.2. Tanner Graph Illustrating Communi-
cations

The underlying data structure that supports the decod-

ing of the LDPC code is the Tanner graph, as mentioned

before. A bipartite Tanner graph [13] represents adjacent

connections between N BNs and N − K CNs. It allows

finding which nodes communicate with each other, a funda-

mental operation for the processing of Kernels 1 and 2 from

Algorithm 1 and can be defined by a parity-check sparse

58

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 SPA

1: {Initialization}
pn = p(yi = 1);

q
(0)
nm(0) = 1− pn; q

(0)
nm(1) = pn;

2: while (ĉHT �= 0 ∧ i < I) {c-decoded word; I-Max. no. of itera-

tions.} do
3: {For all node pairs (BNn, CNm), corresponding to Hmn = 1

in the parity check matrix H of the code do:}
4: {Compute the message sent from CNm to BNn, that indicates the

probability of BNn being 0 or 1:}
(Kernel 1 - Horizontal Processing)

r
(i)
mn (0) = 1

2
+ 1

2

∏
n′∈N(m)\n

(
1− 2q

(i−1)

n′m (1)

)
(1)

r
(i)
mn (1) = 1− r

(i)
mn (0) (2)

{where N(m)\n represents BNs connected to CNm excluding

BNn.}
5: {Compute message from BNn to CNm:}

(Kernel 2 - Vertical Processing)
q
(i)
nm (0) = knm (1− pn)

∏
m′∈M(n)\m

r
(i)

m′n (0) (3)

q
(i)
nm (1) = knmpn

∏
m′∈M(n)\m

r
(i)

m′n (1) (4)

{where knm are chosen to ensure q
(i)
nm (0) + q

(i)
nm (1) = 1, and

M(n)\m is the set of CNs connected to BNn excluding CNm.}
6: {Compute the a posteriori pseudo-probabilities:}

Q
(i)
n (0) = kn (1− pn)

∏
m∈M(n)

r
(i)
mn (0) (5)

Q
(i)
n (1) = knpn

∏
m∈M(n)

r
(i)
mn (1) (6)

{where kn are chosen to guarantee Q
(i)
n (0) +Q

(i)
n (1) = 1.}

7: {Perform hard decoding} ∀n,
ĉ
(i)
n =

{
1 ⇐ Q

(i)
n (1) > 0.5

0 ⇐ Q
(i)
n (1) < 0.5

(7)

8: end while

binary H matrix as the one depicted in Figure 1. During

the processing of Kernel 1 (Horizontal Processing), each

CN updates the corresponding BNs that are connected to it.

The first row of Figure 1 exemplifies CN0 updating BN1,

BN2, BN5 and BN7. An identical approach is followed for

Kernel 2 (Vertical Processing), where each BN updates the

CNs linked to it.

For LDPC codes with large dimensions (e.g. N =
64800-bit in the DVB-S2 standard for satellite communica-

tions), it can be clearly seen from Figure 1 that the number

of messages exchanged between nodes of the graph during

one single iteration can be extremely high. If we consider

that usually several iterations occur (e.g. dozens), then it

becomes clear how communications have an impact in the

performance of such a parallel algorithm.

Figure 1. Tanner graph representing a 4× 8 H
matrix

3. Intel SCC Many-core Architecture

The Intel Single-chip Cloud Computer (SCC) experi-

mental processor is a 48-core ’concept vehicle’ created by

Intel research Labs as a platform for many-core software

research [6]. This processor consists of 24 dual-core tiles

interconnected by a 2D-grid network as Figure 2 illustrates.

The tiles are organized in a 6x4 mesh with each tile contain-

ing:

• Two P54C cores with 16KB L1 and 256KB L2 cache

dedicated to each core;

• A 16KB Message Passing Buffer (MPB) for storing

messages to be sent to other cores (8KB per core);

• A Traffic Generator for testing the performance capa-

bilities of the mesh network;

• A Mesh Interface Unit (MIU) to connect to a router of

the network;

• Two test-and-set registers.

As mentioned before the MIU connects each tile to a router.

All routers are connected together using a mesh intercon-

nection network. The MIU is responsible for packetizing

data that will go onto the network and de-packetizing data

that come from the network. This unit is shared by the

two cores in a round-robin scheme [14]. The maximum

main memory the system can support is 64GB and the 32-

bit memory addresses of the core are translated into system

addresses by the MIU through a lookup table (LUT). This

system main memory is located outside the chip and in or-

der for the cores to access the data, the chip contains four

DDR3 Memory Controllers (MC).

59

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Intel SCC top-level architecture and
tile top-level architecture

In Figure 3 we present an overview of the SCC Memory

Architecture and how the programmer can view the system

and the core’s memory through the RCCE message passing

API. The SCC supports both distributed and shared memory

programming models as it can be seen from Figure 3 and the

system memory is configured and separated in four regions:

• Private off-chip memory: Each core’s LUT is config-

ured such that a specific region of the off-chip DRAM

(equally divided between all cores) is only accessible

by that single core. This is the cores’ main mem-

ory. The addresses corresponding to this memory are

served by a single MC;

• Shared off-chip memory: This region of the off-chip

DRAM is mapped by all LUTs and all cores have di-

rect access to it through any MC. As the system does

not provide hardware cache-coherency, the data that is

in the shared address space is not cached, thus avoid-

ing errors in the programs. This, though, results in

large overheads in the latency to access shared data;

• Shared on-chip memory: Also called Message Pass-

ing Buffer (MPB), this on-chip SRAM is cacheable to

the L1 caches of the cores and is used for message ex-

changing between the cores. Each tile is equipped with

16KB of this type of memory, equally divided to each

core. This results to 8KB of shared on-chip memory

for each core and totalling to 384KB for the entire sys-

tem;

• L2 cache: L2 cache is only used by the private off-chip

memory since all other memory types are uncacheable

to L2, for coherency reasons.

Figure 3. Intel SCC Memory Architecture as
used by the programmer through the RCCE
message passing API

3.1. Intel SCC Programming API

In this section we briefly explain the RCCE Program-

ming API provided by Intel [14]. The RCCE API supports

the Single Program Multiple Data (SPMD) model of exe-

cution. More specifically, all Units of Execution (UEs) are

created at the same time but with no ordering to their ex-

ecution among them. Intel SCC supports C/C++ language

with RCCE API extensions to implement the message pass-

ing communication of the system. RCCE is the SCC com-

munication environment and implements send and receive
functions for sending and receiving messages to and from

the cores. The RCCE API provides control to the MPB

and also controls allocation in the shared off-chip DRAM

memory. Some more advanced features that a program-

mer can find in this API is the power and voltage control

functions. These functions allow the programmer to change

the voltage and the working frequency of the voltage is-

lands (groups of tiles), therefore controlling the total power

consumption of the chip. More information on the RCCE

communication environment and the functions used can be

found in [14].

4. Parallel LDPC Decoding on the Intel SCC

In this section we describe how we implemented three

different parallel models on the Intel SCC. As explained in

Section 3 the SCC processor can support both distributed

and shared off-chip memory models, which from now on

will be referenced as distributed and shared memory. Tak-

ing advantage of the shared memory model we implemented

the Shared Parallel LDPC decoder. In order to explore the

private off-chip memory of each core we implemented the

60

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

Distributed Parallel and the Parallel Multi-codeword LDPC

decoders.

4.1. Data Structures

The H matrix of an LDPC code defines the Tanner graph,

whose edges represent the bidirectional flow of messages

exchanged between BNs and CNs as detailed in Section 2-

B. The information about H is separately coded in two

independent data streams, HBN and HCN, suitable for

processing Kernel 1 (Horizontal Processing) and Kernel 2

(Vertical Processing), respectively, as extensively addressed

in [4]. In each Kernel, data elements may be read sequen-

tially but have to be stored in non-contiguous positions (or

vice-versa) due to the random nature of LDPC codes, which

defines expensive random memory accesses. These costly

write operations demand special effort from the program-

mer [4] in order to efficiently accommodate them in parallel

architectures with distinct levels of memory hierarchy.

4.2. Distributed Parallel Decoder

In the Distributed Parallel Decoder we store a decoding

graph in the private off-chip memory of each core. Each

core then takes one portion of a codeword to decode. Ex-

cept from the dependencies between Kernel 1 and Kernel 2

we also need to update all cores about the changes each core

makes in each iteration inside the Kernels. Since we are not

using a shared address space, we must use messages to ex-

change the computed information in each kernel execution.

When a core starts computation associated to a CN, it must

pass this information to all cores that decode the same code-

word (Figure 4). At the end of each iteration, each core will

update all other cores of the changes it conducted.

This communication is represented with the horizontal ar-

Figure 4. Distributed memory model.

rows in Figure 4. The vertical arrows represent the last mes-

sages computed and broadcasted to all cores before mov-

ing the execution to Kernel 2. As shown in the figure,

all these messages are traveling through the Interconnec-

tion Network of the chip. This message exchange described

above is implemented using broadcast from one core to all

the others. To implement the broadcast operation on the

SCC we used three different approaches. First we used the

RCCE API function call RCCE bcast(), which implements

the broadcast on the SCC by passing as arguments a pointer

to the data buffer, the size of the buffer and the communi-

cator pointer that shows which cores will participate in this

message transaction. We call this the broadcast (bcast) im-

plementation. The second implementation follows the tra-

ditional send/receive model. By using the RCCE send() and

RCCE recv() functions from the RCCE API and defining

which core sends and which core receives at each iteration

we manually implemented a broadcasting system within our

application. At the end of each iteration in the Kernel ex-

ecution we synchronize the cores and start sending update

messages from one core at a time to all the others. As soon

as all cores send their update messages to all other cores, the

execution of the Kernels proceeds in parallel. This helps us

to create a faster broadcasting implementation by avoiding

the extra overheads of the previous implementation, which

are mostly related with runtime error checking overheads.

We call this the send/receive (send/recv) implementation.

The third implementation consists of accessing the MPB di-

rectly. All messages in the SCC system are passed through

the MPB of each tile. We call this the fast broadcast (fastb-

cast) implementation. For both send/receive and broadcast

implementations the messages will eventually go through

the MPB to reach the destination. Instead of using the run-

time system to guide these messages through the MPB we

use direct access to it by copying data to and from the MPBs

of all cores.

4.3. Shared Parallel Decoder

Taking advantage of the 64MB off-chip shared memory

the system offers, it is possible to store the decoding graph

in the shared address space. This way, instead of using a

message passing technique like in the Distributed Parallel

Decoder we take advantage of the shared off-chip memory

where all cores can see the changes made by any other core.

All messages that previously needed to be passed as mes-

sages through the Interconnection Network, are now stored

in the shared memory that each core can directly access. In

Figure 5 we show the representation of this model. At the

bottom of the figure we have Kernel 1 executions in which

we update all the CNs and at the top of the figure we have

Kernel 2 where we update BNs. The execution flow starts

from the left and finishes at the right of the figure. Figure 5

also shows that there is only one instance of the decoding

graph for all the cores and it is stored in the shared memory

address space. Again, each core takes a portion of the ex-

ecution as it happens to any Single Program Multiple Data

(SPMD) application and computes on the input of each Ker-

nel and stores the result back in the shared address space

61

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Shared memory model.

for other cores to read. This store-back to shared memory is

mandatory since all other cores will need this information

for future calculations.

4.4. Parallel Multi-codeword Decoder

In this Section we describe a Multi-codeword Decoder

where the system decodes multiple codewords in parallel.

In this model we exploited the independence of the cores

from each other. Each core on the SCC chip runs a sepa-

rate Linux image that allows it to be independent and able

to execute different instructions or even programs from the

rest of the cores. What we implemented here is a Multi-

codeword Decoder where each core has an instance of the

Decoding graph stored in its private memory. We keep these

instances private to each core and we give each core a dif-

ferent codeword to decode. This means that, when using 48

cores, each core decoding a different codeword, the system

will be decoding 48 codewords simultaneously. Figure 6

represents this multi-codeword decoding strategy. The ex-

ecution flow starts from the left and finishes on the right.

Starting, each core has its own decoding graph located in

its private memory as mentioned before. Then, each core

gets a different word as an input, executes iteratively both

Kernel 1 and Kernel 2 on the input word and finally pro-

duces one decoded word as output, which leads to N de-

coded words when using N cores.

5. Experimental Results

5.1. Experimental Setup

For this work we used the Intel SCC experimental pro-

cessor, RockyLake version. The system has a total of 32GB

main memory and we adopted the default voltage and fre-

quency settings for normal execution, which are 533MHz

for the tile, 800MHz for the mesh interconnection network

Figure 6. Multi-codeword model.

and 800MHz for the DDR3 memory and Memory Con-

trollers. The operating system used for the Intel SCC cores

is the default Linux kernel provided by the RCCE SCC Kit

1.3.0 and the compiler we used to cross compile our pro-

grams for the SCC was gcc v3.4.5. The host PC respon-

sible for controlling the applications execution on the Intel

SCC, is configured with an Intel Core i7 processor running

at 3.7GHz and with 4GB of memory. The connection be-

tween the host and the SCC is managed through a PCIe Ex-

pansion Card and a PCIe x4 cable. For porting and execut-

ing the applications on the SCC we used the RCCE v1.3.0

tool-chain.

For the purpose of this work we used the LDPC decod-

ing implementation for multi-core architectures in OpenMP

from [4] and implemented it for the SCC using the RCCE

API for the three parallel models described in Section 4.

For our evaluation we used two different decoding graph

and codeword input sizes, the 4000×8000 and the 10000×
20000 (number of CNs × number of BNs of the decoding

graph and with the number of BNs also representing the

length N in bits of the codeword to be decoded).

It is relevant to notice that most results presented are nor-

malized and not absolute values. This is due to the fact

that the goal in this study is to show the scalability of a re-

search architecture for future many-core systems. Thus we

intend to show the potential of such architecture and not

results to compete with other alternative existing architec-

tures. Regarding the algorithm studied, its goal is to achieve

a high throughput. As such, most results show the Normal-
ized Throughput metric, which is defined as the Throughput

relative to the sequential execution on a single SCC core

using its private off-chip memory. So, if a setup achieves

a Normalized Throughput of 2 this means that the setup

is able to achieve a Throughput which is twice as large as

62

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

the Throughput achieved by the serial execution on a single

core. Finally, even though we have executed all experiments

for the 4000× 8000 and 10000× 20000 problem sizes, we

show the results for the 4000 × 8000 case as there are no

relevant differences in the normalized results.

Notice that we parallelize the implementations to use all

48 cores except for the Distributed Parallel Decoder where

we used only 32 cores. The reason for that is the fact that the

communication overhead was too high for a larger number

of cores.

5.2. Distributed Parallel Decoder

The first results that we present are the ones correspond-

ing to the Distributed Parallel Decoder implementations. In

Figure 7 we present the Normalized Throughput values for

the send/receive, broadcast and fast broadcast implemen-

tations, for different number of cores. These implemen-

tations are represented as msg(send/recv), msg(bcast), and

msg(fastbcast), respectively.

��
�����
�����
�����
�����
��	�
��	��
��	��
��	��
��	��
����

	� �� �� �� 	��
��

�
��
�
��
�	

�

�

��
��

��
��

��

����
��������
��

��
������������� ��
��������� ��
�������������

Figure 7. Normalized throughput for different
number of cores for the distributed parallel
decoder implementations.

From Figure 7 it is possible to observe that the highest

throughput is achieved for the send/receive implementation,

for most configurations. For the larger number of cores the

best results are achieved for the fast broadcast implementa-

tion, where we use direct memory access on the MPB by

copying the data to send directly on the receiver’s MPB.

The reason why the broadcast implementation is the slow-

est one is related to the fact that it performs a large number

of message copies as to send the data to all needed desti-

nations. The fast broadcast implementation is an optimized

version of the same operation that avoids unnecessary data

copies. The send/receive seems to be more efficient for a

small number of cores as it sends fewer messages while the

fast broadcast seems to be more efficient for a large number

of cores as it reduces the number of data copies.

The most relevant result from this chart though is the fact

that the relative throughput is always smaller than one and

also that the relative throughput decreases as the number

of cores increases. A more detailed analysis of the execu-

tion time has shown that the communication time accounts

for more than 95% of the total execution time. As such,

the communication operations will dominate the execution.

Also, a detailed breakdown of the execution time can be

seen in Figure 8, normalized to the total execution time on

the setup with two cores.

Figure 8. Normalized execution time for dif-
ferent number of cores for the distributed
send/receive parallel decoder implementa-
tions.

The results in Figure 8 show that while the parallelism is

resulting in a significant reduction of the computation time,

this time was always a small portion of the total execution

time. The communication time, on the other hand, is in-

creasing significantly for the increasing number of cores.

This is due to the fact that more messages are sent to more

destinations. Overall, because the communication time

dominates, we have a poor performance for the Distributed

Parallel Decoder implementation.

5.3. Shared Parallel Decoder

In this Section we present the results for the Shared Par-

allel Decoder implementation. The normalized throughput

values for this implementation are shown in Figure 9.

The results in Figure 9 show that the throughput for this

implementation increases with the number of cores up to

nearly 1, which is reached for the 4 core configuration.

63

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Normalized throughput for different
number of cores for the shared parallel de-
coder implementation.

This means that the Shared Parallel Decoder implemen-

tation achieves a speedup up to the 4 core configuration.

Nevertheless, the results are never better than the results

achieved for the sequential execution on a single core when

using the private off-chip memory. This is due to two fac-

tors. First the large number of memory transfers to the off-

chip shared address space that take place while executing

the Kernels. Second, when using a shared address space,

the data items in the shared space are not cached. This is

done as to avoid problems in the execution due to the lack

of hardware cache-coherency. But obviously this strategy

results in large overheads as a consequence of not being

able to benefit from data reuse that could be stored in the

cache.

5.4. Parallel Multi-codeword Decoder

Finally we present the results for the Multi-codeword

Decoder implementation. We show in Figure 10 the nor-

malized throughput for all implementations, the ones de-

scribed in the previous sections and two new ones: multi
which is the simple multi-codeword implementation that

consists of replicating the serial execution on multiple cores

and shared∗ which represents the replication of the best

Shared Parallel Decoder setup, which was achieved using

4 cores. Thus for 8 cores we launch two instances of the

shared 4 core implementations.

From Figure 10 it is possible to observe that clearly the

best implementation is the multi-codeword as it achieves a

near linear throughput increase with the increasing number

of cores. For a setup with 32 cores we achieve a relative

throughput of 27.8. This high throughput is achieved due to

the fact that the architecture is made in a way that it is able

Figure 10. Normalized throughput for differ-
ent number of cores for the different imple-
mentations.

to support a large amount of parallel tasks running on the

different cores. For this particular application the intercon-

nection network and the memory controllers do not seem to

be a limitation to the performance.

Another interesting fact that can be observed is that even

though the shared∗ implementation achieves much better

throughput than the original shared implementation, its re-

sults are still far from the results obtained with the multi ap-

proach. As already mentioned before, this is mostly due to

the fact that for the shared implementations the caches are

bypassed resulting in higher overall memory latency. Over-

all, the multi-codeword decoder results show that the SCC

is an excellent architecture to exploit throughput parallelism

as long as bandwidth is not a limitation, which is the case

for the LDPC application.

6. Conclusions and Future Work

In this paper we address the development of parallel

LDPC decoders on the SCC many-core processor from In-

tel. We propose three different execution models that are

able to overcome limitations imposed both by the algo-

rithm and parallel architecture, namely the Shared Paral-

lel, the Distributed Parallel and the Parallel Multi-codeword

Decoder. Although we observed that the large number

of messages exchanged didn’t allow the distributed ap-

proach to scale and the large number of uncacheable mem-

ory accesses limited the scaling of the shared approach,

we managed to scale the throughput almost linearly on the

SCC architecture by using the Parallel Multi-codeword De-

coder. Our experimental results show that using the multi-

codeword approach the relative throughput achieved is al-

most 28 for 32 cores.

64

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

As future work we plan focusing on the mapping of

data that is usually irregularly accessed, into equivalent data

blocks that occupy contiguous memory positions in order to

control memory accesses more efficiently and improve the

global performance of the parallel algorithm. Also, we plan

to explore techniques to better utilize the on-chip memory

as to cache the data in order to improve the shared memory

implementation.

7. Acknowledgment

The authors would like to thank Intel Labs for lending

the Intel SCC research processor.

References

[1] L. Chih-Hao, Y. Shau-Wei, C. Chih-Lung, C. Hsie-Chia,

L. Chen-Yi, H. Yar-Sun, and J. Shyh-Jye. An ldpc decoder

chip based on self-routing network for ieee 802.16e applica-

tions. IEEE Journal of Solid-State Circuits, 43(3):684–694,

March 2008.

[2] J. Dielissen, A. Hekstra, and V. Berg. Low cost ldpc decoder

for dvb-s2. Proceedings of Design, Automation and Test in
Europe (DATE ’06), Munich, Germany, March 2006.

[3] G. Falcao, V. Silva, and L. Sousa. High coded data rate

and multicodeword wimax ldpc decoding on cell/be. IET
Electronics Letters, 44(24):1415–1417, November 2008.

[4] G. Falcao, L. Sousa, and V. Silva. Massively ldpc decoding

on multicore architectures. IEEE Transactions on Parallel
and Distributed Systems, 22(2):309–322, February 2011.

[5] R. G. Gallager. Low-density parity-check codes. IRE Trans-
actions on Information Theory, 8(1):21–28, January 1962.

[6] J. Howard and et al. A 48-core ia-32 message-passing pro-

cessor with dvfs in 45nm cmos. In Solid-State Circuits Con-
ference Digest of Technical Papers (ISSCC), 2010 IEEE In-
ternational, pages 108–109, February 2010.

[7] http://developer.nvidia.com/object/cuda.ht

ml. Cuda homepage.

[8] http://www.intel.com/content/www/us/en/architecture-and-

technology/many-integrated-core/intel-many-integrated-

core architecture.html. Intel many integrated core

architecture.

[9] J. Hyunwoo, C. Junho, and S. Wonyong. Massively parallel

implementation of cyclic ldpc codes on a general purpose

graphics processing unit. Proceedings of the IEEE Work-
shop on Signal Processing Systems (SiPS’09), pages 285–

290, October 2009.

[10] D. J. C. Mackay and R. M. Neal. Near shannon limit perfor-

mance of low density parity check codes. IEE Electronics
Letters, 32(18):1645–1646, August 1996.

[11] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and

N. Wehn. A novel ldpc decoder for dvb-s2 ip. Proceedings
of Design, Automation and Test in Europe (DATE ’09), Nice,
France, March 2009.

[12] L. Shu and J. C. Daniel. Error Control Coding. Prentice

Hall, 2004.

[13] R. Tanner. A recursive approach to low complexity codes.

IEEE Transactions on Information Theory, 27(5):533–547,

September 1981.
[14] G. Timothy, Mattson, and et al. The 48-core scc proces-

sor: the programmer’s view. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking and Storage Analysis, April 2010.

[15] S. B. Wicker and S. Kim. Fundamentals of Codes, Graphs,
and Iterative Decoding. Kluwer Academic Publishers, 2003.

65

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:07:26 UTC from IEEE Xplore. Restrictions apply.

