
Int J Parallel Prog (2016) 44:257–277
DOI 10.1007/s10766-015-0369-2

Integrating Transactions into the Data-Driven
Multi-threading Model Using the TFlux Platform

Andreas Diavastos1 · Pedro Trancoso1 ·
Mikel Luján2 · Ian Watson2

Received: 28 March 2013 / Accepted: 8 June 2015 / Published online: 19 June 2015
© Springer Science+Business Media New York 2015

Abstract The introduction of multi-core processors has renewed the interest in
programming models which can efficiently exploit general purpose parallelism.Data-
Flow is one such model which has demonstrated significant potential in the past.
However, it is generally associated with functional styles of programming which do
not deal well with shared mutable state. There have been a number of attempts to
introduce state into Data-Flow models and functional languages but none have proved
able to maintain the simplicity and efficiency of pure Data-Flow parallelism. Transac-
tional memory is a concurrency control mechanism that simplifies sharing data when
developing parallel applications while at the same time promises to deliver affordable
performance. In this paper we report our experience of integrating TransactionalMem-
ory and Data-Flow within the TFlux Platform. The ability of the Data-Flow model
to expose large amounts of parallelism is maintained while Transactional Memory
provides simplified sharing of mutable data in those circumstances where it is impor-
tant to the expression of the program. The isolation property of transactions ensures
that the exploitation of Data-Flow parallelism is not compromised. In this study we
extend the TFlux platform, a Data-DrivenMulti-threading implementation, to support

B Andreas Diavastos
diavastos@cs.ucy.ac.cy

Pedro Trancoso
pedro@cs.ucy.ac.cy

Mikel Luján
mikel@cs.manchester.ac.uk

Ian Watson
watson@cs.manchester.ac.uk

1 Department of Computer Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

2 School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0369-2&domain=pdf


258 Int J Parallel Prog (2016) 44:257–277

transactions. We achieve this by proposing new pragmas that allow the programmer
to specify transactions. In addition we extend the runtime functionality by integrating
a software transactional memory library with TFlux. To test the proposed system,
we ported two applications that require transactional memory: Random Counter and
Labyrinth an implementation of Lee’s parallel routing algorithm. Our results show
good opportunities for scaling when using the integration of the two models.

Keywords Programming models · Future multi-cores · Transactional Memory ·
Data-Flow model · Data-Driven Multi-threading

1 Introduction

As technology delivers higher integration of devices into processors, the multi-core
design has become the de-facto standard for processor architecture. It promises to
deliver high performancewhilst maintaining an acceptable complexity and power bud-
get. The trends show a continuous increase in the number of cores and it is expected
that by 2020 processors will include 1000s of cores [23]. This will lead to new chal-
lenges, one of them being the programmability of such large-scale systems. If their
power is to be harnessed on the solution of a wide range of problems it will be neces-
sary to develop new parallel programming models which are both efficient and easy
to use.

There has recently been a re-surgence of interest in the Data-Flowmodel as a way to
efficiently exploit large-scale parallelism. Even though the original implementations of
Data-Flow were not efficient, more recent developments have overcome this [5,8,20].
However, the models are suited largely to the implementation of programming styles
which are essentially purely functional. Indeed it is the absence of side effects in
functional models which permits easy parallelisation. Unfortunately, there are many
cases in real programs where the use of shared mutable state is either necessary for
efficiency or is a fundamental part of the problem being solved. In these circumstances,
functional approaches are unsuitable.

This limitation has long been recognised and there have been a number of attempts
to integrate state into both Data-Flow models and functional languages. The early
work on M-structures in Id [3] added implicit locking to data items to avoid the
explicit manipulation of synchronisation. However, this merely hid the complexity of
the synchronisation rather than removed it and, in many ways, made the writing of
shared state programs more error prone. Functional languages such as SML [14] and
F# [22] have introduced mutable variables in an attempt to extend their practicality.
Unfortunately this state can rapidly destroy both the mathematical cleanliness of the
language and the ability to exploit parallelism with Data-Flow like execution models.
Haskell originally introduced state in a more disciplined way by the use of MON-
ADS [13]. However, although this enables the isolation of state via the type system
and hence preserves mathematical properties, the state manipulation is serialised and
thus does not address the problems of writing parallel programs.

The Transactional Memory (TM) model facilitates sharing data in a manner which
isolates individual sharers from the complexities of synchronisation. It was originally

123



Int J Parallel Prog (2016) 44:257–277 259

proposed as a way of simplifying parallel programming in conventional languages but
has been shown to provide a clean and simple way to add the sharing of state to a
functional language [18]. Transactional Haskell uses the MONAD approach to allow
the expression of explicit threads within Haskell programs by defining transactional
variables which are manipulated serially within a thread but interact in parallel across
threads. It has been shown that parallel state based programs can be specified while
maintaining much of the purity of functional programming. It is our belief that a more
general and more usable programming model can be produced by adding transac-
tions to Data-Flow using more pragmatic programming approaches and avoiding the
complexity of MONADS.

This paper reports our first experiences of integrating transactions into a thread
based Data-Flow model. We use TFlux [21] as the Data Driven Multi-threading
(DDM) implementation and TinySTM [17] for transactional support. This merged
implementation will be referred to as DDM+TM, hereafter. We propose additional
TFlux directives for defining transactional threads and variables. We show how it is
possible to program applications with the combined model and present a preliminary
performance evaluation study. We also analyse the overheads of the proposed model
through an evaluation process using a synthetic application.

This paper is organized as follows, Sect. 2 discusses the related work. Section 3
introduces the twomodels of Data-Flow and TMused in this work. Section 4 describes
the implementation we propose using the TFlux system and TinySTM model. In
Sect. 5 we analyze the applications we implemented and used for our experimental
evaluation. Section 6 describes the experimental setup while Sect. 7 describes the
performance scaling of two applications developed usingDDM+TMand our overhead
analysis of the proposed model. In Sect. 8 we discuss the conclusions and future
work.

2 Related Work

There has recently been renewed interest in the Data-Flow approach to computation
that was pioneered in late 1970s and 1980s [4,9,12,16,27]. Those projects demon-
strated that it was feasible to express sufficiently large amounts of parallelism that
a significant problem was how to throttle and schedule it. Subsequent projects, for
example TFlux [21] showed that a coarsening of the granularity (from instructions to
tasks) could result in more controllable and more efficient parallel execution.

Numerical Linear Algebra (NLA) is one area where Data-Flow ideas have recently
been adopted. This is apparent both in LAPACK and BLAS functionality (see, e.g.
PLASMA project [24]) and for sparse matrices [11]. NLA constitutes one of the
main kernels for scientific computing and their main next challenge is how to scale
to petaflop-scale high-performance systems. The new generation of NLA algorithms
are moving towards expressing parallelism but leaving the scheduling to the runtime
trying to harness the available combination of resources (multi-cores, many-cores,
clusters, GPUs). It has been demonstrated that a Data-Flow execution using Parallel
Linear Algebra for Scalable Multi-core Architectures (PLASMA) can easily generate
millions of tasks.

123



260 Int J Parallel Prog (2016) 44:257–277

There is a clear relation between Data-Flow computations and parallelization of
functional languages. Another highly prominent use of functional programming tech-
niques can be observed in the MapReduce frameworks [6]. Provided the map and
reduce operations are side-effect free, we can automatically parallelize their execution
using a Data-Flow approach.

Although the benefits of Data-Flow can be demonstrated by the above applications,
it is clear that there are cases where shared state is essential. This may be because it
is a fundamental part of the program, it facilitates software development or a pure
functional execution will be inefficient (e.g. due to memory management overheads).
To overcome these limitations, it is desirable to introduce shared mutable state into the
Data-Flow approach. However, this needs to be done in a way which does not require
the specification of explicit synchronisation between parts of the program. This both
introduces significant programming complexity and can often lead to unnecessary
serialisation of the execution. Therefore approaches which introduce conventional
locking are unlikely to lead to models which are either easy to use or efficient.

Transactional Memory (TM) [10] is a model for manipulating mutable shared data
which attempts to reduce complexity by eliminating the need for explicit synchro-
nisation. It works by allowing the programmer to specify that certain sections of a
program must be executed atomically but without the need to consider any of the
synchronised control that might be required. Execution of atomic sections takes place
optimistically, that is with an assumption that any shared data within the section will
not be changed by any other concurrent execution. If such a conflict does occur, the
underlying runtime system ensures that only one execution succeeds while others are
transparently re-executed. This leads to the important property of isolation. A thread
always proceeds as though it has exclusive access to any shared data within an atomic
section. All synchronisation complexity is removed and it is unnecessary to serialise
accesses to achieve correct execution. Although, in practice, some serialisation may
occur due to the resolution of conflicts, the optimistic nature of the model ensures
that maximal parallelism is achieved. Although TMwas originally proposed to reduce
the complexity in the context of conventional threaded programming languages, the
isolation property makes it an ideal way of introducing mutable state into Data-Flow
or functional approaches.

A common example used for motivating TM illustrates the need for mutable shared
state [18]. Consider a computation which is trying to perform concurrent credit/debits
between bank accounts. Firstly, the state is fundamental to the problem. The account
balances must be globally accessible variables which can be updated and persist.
The credit/debit operations must be atomic to preserve the overall correctness of the
balances. Assuming that we do not know the identity of the accounts when specifying
the problem, it is clear that the accounts might overlap and conflicts could occur. A
conventional locking approach would need to deal with the cases where overlap might
occur by taking explicit locks and dealing with complex interactions such as deadlock.
The problem could, of course, be greatly simplified by serialising all the operations
but this would defeat the desire to exploit parallelism. However, in many cases, there
will be no overlap and an optimistic approach can proceed with maximal parallelism.
We can envisage a Data-Flow solution where threads have been generated to perform
calculations on each account using a purely functional approach and then invoking a

123



Int J Parallel Prog (2016) 44:257–277 261

transaction to perform a balance transfer. Any number of such threads can be generated
to operate in parallel without any need to consider how they interact.

In the TERAFLUX project [23] we are investigating how to combine different
variants of Data-Flow models (including synchronous Data-Flow) with Transactional
memory. This paper reports our experiences with a first combination of the data-
driven runtime system, TFlux, and software TM driven by the implementation of two
applications.

3 Data-Flow and Transactional Memory

In this section we describe the two individual parallel programming models, empha-
sising on the strengths and weaknesses of each one separately. We also discuss the
combination of the models as proposed in this work.

3.1 Data-Flow

Data-Flow is known to be the model that is able to exploit the most parallelism in
an application. In the recent years it has been revisited as the solution for scaling the
performance of applications. Data-Flow is a computation model that does not follow
the classical program counter model but instead relies the execution of each operation
on the availability of its input data. Each operation can be considered as a Data-Flow
node and each node can be executed independently of all other nodes.

A Data-Flow program can be described using a directed acyclic graph (Data-Flow
Graph), where each node represents an operation and every edge the data dependencies
between nodes. Figure 1 shows a Data-Flow graph for a reduction operation. The first
level of nodes can start execution immediately as there are no input dependencies,
while the rest of the nodes must wait for their input to arrive from previous nodes as
depicted by the directed edges of the graph.

Strengths The Data-Flow model has the ability to exploit the maximum available
parallelism in an application while avoiding the high synchronization overheads and
memory latencies of other parallel implementation (e.g. locks, barriers). Data-Flow is
a side-effect free model as each node depends only upon its inputs and can be inde-
pendently executed. A Data-Flow program can be easily implemented as a distributed

Fig. 1 A Data-Flow graph for
calculating a reduction operation

123



262 Int J Parallel Prog (2016) 44:257–277

program as the communication between nodes is explicit and done only at the end of
each nodes execution.

Weaknesses The Data-Flow model lacks the ability of providing shared state in pro-
gramswhere this is a fundamental operation. To overcome this limitation it is important
to be able to provide shared mutable state in a Data-Flow program. However, it is also
essential that this is done without introducing explicit synchronization in the pro-
gram as this will lead to unnecessary serialisation of the execution that will eventually
eliminate the Data-Flow principles from the execution.

3.2 Transactional Memory

Originally proposed as a way of simplifying parallel programming in conventional
languages, TransactionalMemory [10] attempts to reduce complexity of manipulating
mutable shared data by eliminating explicit synchronization. It allows the programmer
to specify that certain sections of a program will be executed atomically, without the
need of considering any synchronization control. Atomic sections are executed fully
parallel and if a conflict occurs on shared data, the underlying runtime will ensure
that only one transaction succeeds, while others are re-scheduled for execution. Using
Transactional Memory, parallel state programs can be specified while maintaining
much of the purity of functional programming.

Strengths The atomicity offered by TM will allow concurrent access to shared data
structures, consequently allowing parallel execution of transactions that share these
data. By monitoring these data structures the TM runtime system will detect any
conflicts that may arise during the execution. In such a case the conflict transactions
will abort and the runtime system will reschedule them.

Weaknesses The overheads imposed by existing software implementations of TM
are significant. These overheads come from monitoring data structures, aborting and
rescheduling conflicting transactions. Although TM is good at synchronizing and
monitoring memory access to shared data, it does not offer any mechanism to prevent
conflicts. These conflicts alone impose a large overhead as the runtime system will
need to reschedule them, thus re-executing them all over again. Some of the overheads
of a software TM implementation can be resolved when using a hardware TM system.
In this work though, we focus on a software implementation as to keep it portable, as
this is a first work of combining the two models and we wanted a platform that would
allow us to be able to debug and experiment with the system as much as possible.

3.3 Data-Flow and Transactional Memory Combined

Our proposed combined model allows both approaches to be integrated in one system.
Data-Flow is used to parallelise a program at the level possible, thus retaining theData-
Flow principles in a parallel application. Where shared state is needed, or to explore
even more parallelism in the parallel application, the TM system is introduced.

123



Int J Parallel Prog (2016) 44:257–277 263

Strengths Combining the two models results in several benefits. We manage to retain
the strengths of both models and minimize some of their weaknesses. Introducing
mutable state we improve the Data-Flow model by allowing data structures to be
easily shared among Data-Flow threads, without having to explicitly merge them
as you would in a purely Data-Flow program. We also improve the TM model by
reducing the number of conflicts. By using both Data-Flow threads and transactions
in the same program we manage to reduce the total number of transactions a parallel
programwill have. Eventually this means that the possibility of transactions to conflict
will also be reduced. Overall, this will reduce the overhead produced by a software
TM implementation. The Data-Flow model cannot explore parallelism in sections
that share common data structures. Integrating transactions into the Data-Flow model
we add the ability of handling shared state, thus increasing the level of parallelism
that can be explored. Data-Flow threads are stateless and can be re-executed since
they have no side effects. This reduces the work that has to be done by a TM system
upon recovery in a conflict situation, by simply re-executing the conflicting Data-Flow
threads.

Weaknesses On the other hand, the combination of the two models has some weak-
nesses. To provide mutable shared state on data structures for the Data-Flowmodel we
must monitor the shared data from the TM runtime system. This will provide atomic-
ity, isolation and consistency for the shared data and the execution itself. To do so we
need to indicate those data structures that are to be monitored. In the proposed model
this task is left to programmer. To ease the programmers effort though we offer a more
efficient way to express these dependencies on the shared data structures between
threads as described in Sect. 4.

4 Proposed DDM+TM Implementation

4.1 TFlux System

There has recently been a resurgence of interest in the Data-Flow model as a way to
efficiently exploit large-scale parallelism. Nevertheless, the original Data-Flow imple-
mentations suffered from serious limitations as it required specialized hardware [9].
New hardware designs though, make the Data-Flowmodel a possible solution for scal-
ing the performance of applications. Consequently, researchers have proposed new
alternatives based on this model that are able to exploit the parallelism effectively.
DDM is one such alternative, that can exploit the maximum available parallelism of
an application by exploiting data dependencies, while at the same time overcomes
overheads by increasing the granularity of the execution blocks [5,20]. Each execu-
tion block (i.e. thread) in DDM is scheduled in a Data-Flow way at runtime, but the
instructions inside a thread are executed in a control-flow way. In some DDM imple-
mentations, the scheduling unit that handles the synchronization of the execution is
implemented in software, thus guarantees portability of the implementation to any
new hardware design.

123



264 Int J Parallel Prog (2016) 44:257–277

Fig. 2 The layered design of
the TFlux system [21]

This study uses the Data-Driven Multi-threading model and in particular its TFlux
implementation [21]. We chose TFlux as it is a complete platform that includes a
programming environment for DDM applications using compiler directives, a source-
to-source preprocessor that will translate the application augmentedwith the directives
into DDM parallel code and a Thread Scheduling Unit (TSU) that handles the Data-
Flow scheduling of the threads at runtime. In Fig. 2 we show the different modules of
TFlux. An important advantage of TFlux is that it is not build for a specific machine
but rather works as a virtualization platform for DDM program execution on a variety
of computing systems. Another reason we chose the TFlux implementation is that
the produced parallel code from the platform is in ANSI-C which complies with the
supported programming languages of most systems.

In order to program a DDM application with TFlux, directives must be added
to regular C code. The most relevant directives are the ones which enable a set of
instructions to be defined as a thread (see Table 1). In addition it is necessary to define
the inputs and outputs of a thread as well as the producer and consumer relationships
between threads. Using this information the system is able to form the code for the
threads as well as the thread dependency graph, which is the structure that needs to
be loaded into the TSU for the scheduling to be executed in a Data-Flow manner.
The task of the scheduling unit is to manage the counters that control the firing of
threads. Each time a producer thread terminates its execution, the consumer’s counter
is decremented by one. When the counter reaches zero, all needed results have been
produced and thus the thread is ready for execution. All these operations are part of
the TFlux runtime system, which includes all data structures required to manage the
thread scheduling as well as the scheduling code itself. The operations of the runtime
system are depicted in Fig. 3. There are hardware and software versions of the TFlux
platform. In this study we use the software version, also called TFluxSoft, without
losing generality of the system. In TFluxSoft the TSU’s execution is handled by one
core of the multi-core system we are using.

4.2 TinySTM Software Library

In order to support the transactional execution, i.e. the monitoring of the updates to
variables, the conflict detection and the restarting of the execution in case of abort, we

123



Int J Parallel Prog (2016) 44:257–277 265

Table 1 TFlux DDM pragma directives

#pragma ddm startprogram Define the start and the end of a DDM program

#pragma ddm endprogram

#pragma ddm block ID Define the start and the end of a block of threads with
identifier ID#pragma ddm endblock

#pragma ddm thread ID kernel
NUMBER

Define the boundaries of a DDM thread with identifier
ID and the kernel NUMBER

#pragma ddm endthread

#pragma ddm for thread ID Define the boundaries of a DDM loop thread with
identifier ID#pragma ddm endfor

#pragma ddm kernel NUMBER Declare the number of kernels to be used

#pragma ddm var TYPE NAME Declare a shared variable with NAME and TYPE

#pragma ddm private var TYPE
NAME

Declare a private variable with NAME and TYPE

Fig. 3 TFlux Runtime system

need to extend the TFlux runtime. Rather than developing from scratch we preferred
to extend the TFlux runtime system with an existing software TM implementation.
We chose the TinySTM [17] as it appeared to provide a simple approach to the inte-
gration. However, we could have used other Software TM systems such as TL2 [7] or
RSTM [19].Within TERAFLUX, we intend to investigate other TM implementations,
including hardware support, for the scalability of the execution required for large-scale
Data-Flow applications.

4.3 DDM+TM

A program in DDM+TM consists of both Data-Flow threads and transactions. Each
of the two models though has it’s own runtime system for scheduling either threads

123



266 Int J Parallel Prog (2016) 44:257–277

or transactions, thus when combining the two we had to define responsibilities for
each runtime. In this work, we kept the two runtime systems independent from one
another but we enforced a hierarchical structure for the execution of Data-Flow threads
and transactions. The TFlux runtime system (the TSU) runs on top of the TM runtime
library and is responsible only for schedulingData-Flow threads,while theTMruntime
is only responsible for aborting/committing transactions. The scheduling of a Data-
Flow threadmay impose the start of a transaction but the TSUwill not interferewith the
monitoring of the transactions. When a transaction starts execution the TM runtime
will take over and monitor for conflicts. If such a conflict occurs, the TM runtime
will reschedule the transaction without the TSU noticing any changes. As soon as
a transaction commits and the Data-Flow thread is finished, the TSU will take over
again and schedule the next ready thread.

In this first attempt at adding TM toTFlux, we have opted not tomake changes in the
TSU to support transactional behavior. However, we are investigating the possibility
of offloading the re-scheduling of an aborted transactional thread to the TSU instead
of the TinySTM system as previous work on TM [1,2] has shown that controlling
the scheduling using information about transactions can improve the performance and
reduce wasted work due to aborts.

When adding support for transactions to TFlux an important decision concerned the
granularity of transactions. The simplest approach would be to declare a whole thread
as a transaction. With this option we would enhance the system by providing the pro-
grammer with two types of threads: pure Data-Flow threads or transactional threads.
However, a thread may contain code that needs to be transactional but combined with
non-transactional code. Furthermore, it may be appropriate to specify several atomic
regions within a thread. This could lead to potentially wasteful aborts when either a
transaction is only a small portion of the thread or multiple atomic regions need to be
aborted together. Therefore, we opted for providing support for defining the beginning
and end of transactional sections within threads.

The responsibility of finding the dependencies in a Data-Flow program and the
variables to be monitored in a TM program fall upon the programmer. In DDM+TM
the programmer must decide for both the dependencies of Data-Flow threads and the
variables to be monitored within transactions. To ease the effort of the programmer in
developing DDM+TM programs we introduce new pragma directives that allow the
declaration of Data-Flow threads along with their dependencies and the declaration
of transactions with the variables to be monitored. These new TFlux directives are
presented in Table 2.

Another design issue is how we identify variables which are transactional. These
variables will require that their read and write operations are observed to form the
read-set and write-set during a speculative execution of the transaction. These sets are
used to detect conflicts. For all these transactional variables we also need to version the
results to allow a clean restart of the transaction if necessary. One option is to monitor
every memory access that is performed within a transaction. However, this is not
necessary for unshared variables, for example those which are thread local. Therefore,
in common with other TM approaches, we explicitly declare which variables are
transactional. The directive

#pragma ddm atomic tvar(NAME : READ/WRITE)

123



Int J Parallel Prog (2016) 44:257–277 267

Table 2 TFlux DDM+TM pragma directives

#pragma ddm atomic thread ID tvar
(NAME : READ/WRITE/READ_WRITE)

DDM+TM thread boundaries with identifier ID
and the atomic variables to monitor for either
READ orWRITE

#pragma ddm atomic endthread

#pragma ddm atomic for thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

DDM+TM loop thread boundaries with
identifier ID and the atomic variables to
monitor for either READ orWRITE

#pragma ddm atomic endfor

#pragma ddm atomic transaction
tvar(NAME : READ/WRITE/READ_WRITE)

DDM+TM boundaries of a transaction that is
smaller than a thread and the atomic variables
to monitor for either READ orWRITE

#pragma ddm atomic endtransaction

#pragma ddm atomic tvar(NAME :
READ/WRITE/READ_WRITE)

Declare an atomic variable to monitor either for
READ orWRITE

#pragma ddm atomic abort Manually abort a transaction

offers such functionality. Note that each transactional variable is associated within a
thread with a READ, WRITE or READ_WRITE qualifier. This qualifier provides infor-
mation on the use of the variable within the thread which can be used by the TM
implementation to optimize the execution.

For DDM+TM, we decided to have a complete separation between transactional
and non-transactional variables. Transactional variables must always be accessed
within a transaction. Non-transactional variables are normally private to a thread dur-
ing execution and thus cannot generate conflicts. Other non-transactional threads will
only be allowed to access a non-transactional variable if the scheduling can guarantee
independence. With this decision we avoid the problems of weak isolation. Note that
we do not modify DDM by imposing this decision. DDM+TM could be implemented
without speculation by performing a scheduling where the transactional variables are
treated as inputs and outputs of the threads that are read and written. This will result
in the sequential execution of the code in case of threads accessing shared data where
we cannot determine the dependencies before runtime.

For transactional variables, we also provide the programmer with pragmas to define
them within the declaration of a transactional thread. This is required to support the
monitoring of variables that may have more than one alias (e.g. parameter variables
inside the code of a function). The monitoring of these variables is specified as a
parameter in the thread declaration (see Table 2).

As TFlux has two pragmas for declaring threads, the table contains
#pragma ddm atomic thread ID and
#pragma ddm atomic for thread ID

declaring a transactional thread and a transactional loop thread, respectively. The
tvar(NAME : READ/WRITE) extension defines the thread variables that are transac-
tional.

123



268 Int J Parallel Prog (2016) 44:257–277

Table 3 TFlux DDM+TM pragma directives correspondence with TinySTM runtime calls

DDM+TM Prama Directives TinySTM runtime support

#pragma ddm atomic thread ID tvar
(NAME : READ/WRITE/READ_WRITE)

stm_init_thread()

#pragma ddm atomic endthread stm_exit_thread()

#pragma ddm atomic for thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

stm_init_thread()

#pragma ddm atomic endfor stm_exit_thread()

#pragma ddm atomic transaction
tvar(NAME : READ/WRITE/READ_WRITE)

sigjmp_buf *_e = stm_start
(&_a) if (_e != NULL)
sigsetjmp(*_e, 0)

#pragma ddm atomic endtransaction stm_commit()

#pragma ddm atomic tvar(NAME :
READ/WRITE/READ_WRITE)

int temp = (int) stm_load
((stm_word_t *)&NAME) OR
stm_store((stm_word_t *)&
NAME , (stm_word_t *)temp)

#pragma ddm atomic abort stm_abort()

The last proposed directive
#pragma ddm atomic transaction

allows the declaration of a transaction as a portion of a thread. For certain applications
such as those considered in this work, this offers better performance (see Sect. 7).

These directives are a subset of the possible ones which have been defined for
TM [10]. However, they are enough to implement the applications described in this
paper and we consider them to be the core directives. Extra transactional functionality
can be added by declaring

#pragma ddm atomic abort

in the case the programmer wants to manually abort a transaction. In Table 3 we show
the correspondence of the proposed pragmas with the calls to the TinySTM runtime
that will automatically be generated by the preprocessor.

5 Workloads

For this proposal of transaction integration with the Data-Flow model we have tested
two applications. The Random Counters and the Labyrinth implementation of Lee’s
algorithm from the STAMPBenchmark suite [15]. Thesewere originally implemented
in a conventional language using TM and are not naturally Data-Flow applications.
However, for this studywe are focussingmainly on the functionalities and overheads of
the implementation rather than the added benefits of the integration such as exploiting
implicit parallelism.

5.1 Random Counters

In the Random Counters application we use multiple threads to increment the values
of random array positions. We create and initialize all elements of the array to zero.

123



Int J Parallel Prog (2016) 44:257–277 269

Fig. 4 Random Counters implementation with TFlux DDM+TM pragma directives

We then spawn multiple threads to execute loop thread code. Each loop iteration is
executed in parallel and each threadwill do the samework: generate a randomsequence
of numbers—that represent index positions in the array and increment by 1 the values
located in those positions. In the code shown in Fig. 4 we present the implementation
of this algorithm, where the

#pragma ddm atomic for and
#pragma ddm atomic endfor

directives define the DDM+TM thread boundaries, showing that all the code of the
thread is considered to be transactional. The purpose of this algorithm is to create
concurrent accesses to memory. This will in turn create memory conflicts between
threads trying to access the same memory locations. In an unsynchronised parallel
implementation this execution would create a false result.

In the DDM model this code would have to be executed sequentially since the
dependencies cannot be defined prior to the execution (due to the random memory
accesses). By using TM we protect the values of the shared variables and ensure that,
at the end of the execution, we will get the correct result while running the threads in
parallel.

5.2 Labyrinth Implementation of Lee’s Algorithm

Lee’s Algorithm is used in the process of producing an automated interconnection of
electronic components. It guarantees to find a shortest interconnection between two
points using the Expansion-Backtracking technique shown in Fig. 5.

Starting from the source point S, the grid points are numbered by expanding a
wavefront until the destination is reached (Fig. 5a–e). At each phase during the expan-
sion stage each grid point in the wavefront marks its unnumbered neighbors with an
increment of its value. Once the destination D is reached, a route is traced back to
the source by following any decreasing sequence of numbered grid points that are not
used by others. Once the shortest route has been determined, the grid points reserved
for this route cannot be used by others [26].

For the purpose of this work we used the Labyrinth TM implementation of Lee’s
algorithm from STAMP [15] as a guideline and ported it to DDM+TM. In Fig. 6 we
present the integration of TFlux DDM+TM pragmas into the application. Using

123



270 Int J Parallel Prog (2016) 44:257–277

Fig. 5 Lee’s algorithm example

Fig. 6 Lee’s Algorithm pseudo-code with TFlux DDM+TM pragma directives

#pragma ddm atomic for and
#pragma ddm atomic endfor

directives we declare the boundaries of a DDM+TM thread. In step 1 each thread will
take a (S, D) pair from the global work queue as an atomic action. In step 2 each thread
will copy the global grid to its local memory space, and in steps 3–4 each thread will
execute the algorithm’s expansion and backtracking phase locally. Finally in step 5
each thread will write the selected route back to the global grid as an atomic action. In
order for steps 1, 2 and 5 to be executed correctly we must ensure that no data conflicts

123



Int J Parallel Prog (2016) 44:257–277 271

occur on the work queue or global grid. Declaring steps 1, 2 and 5 as transactional
code with the

#pragma ddm atomic transaction and
#pragma ddm atomic end transaction

we provide an atomic execution for those steps ensuring that the final result will be
correct. As for steps 3 and 4 the execution is done locally using only data local to each
thread. This does not require this part of the code to be transactional and lets it execute
in parallel within the boundaries of the thread, thus avoiding the need to re-execute
non-transactional code in the event of a conflict. This is therefore an example where
not all the code of a thread is transactional and hence need not be declared with the
transactional version of the pragma.

6 Experimental Setup

We have evaluated the integration of TMwith the Data-Flowmodel using the Random
Counters and Lee’s algorithm described in Sect. 5. For Random Counters we used a
conventionalmulti-threadedTM implementation as a baseline for our implementations
of theDDM+TMversion of the application. In this preliminary studywe are interested
in the overheads of the DDM+TM model over the TM implementation rather than
detailed performance. For Lee’s algorithmweused theLabyrinth implementation from
[15] that uses TM calls from TinySTM and integrated the TFlux directives to create
the DDM+TM version. The results are for the parallel DDM+TM implementation
of the applications on a 12-core machine with 2 6-core AMD Opteron(tm) Processors
2427 running at 2200MHz. The available memory of the system is 31GB of main
memory, 512KB of L2 and 6144KB of L3 cache. The system is running an Ubuntu
SMP x86-64 operating system.

The porting of the applications for the Data-Flow model was performed using the
pragma directives from [25] of the TFlux Soft system [21] version 1.5.0. To inte-
grate the transactions in the applications we used the TinySTM library. The execution
time measurements were collected using the gettimeofday system call to measure the
execution time of the section of code that has been parallelized. The input data sizes
used for each application are depicted in Table 4. All the results collected are for the
Data-Flowmodel implementing transactions over the baseline execution. The baseline
executionwas considered to be the sequential execution of the applications implement-
ing transactions with the TinySTM library. To calculate the results while avoiding any
statistical errors we used the average of 10 executions removing the largest and the
smallest execution time.

Table 4 Experimental workloads problem sizes

Benchmark Problem size

Random counters 10 Updates 100 Updates 1000 Updates

Labyrinth 256× 256× 3− n256 256× 256× 5− n256 512× 512× 7− n512

123



272 Int J Parallel Prog (2016) 44:257–277

7 Experimental Results

7.1 DDM+TM Applications Evaluation

In Table 5 we present the statistics of the Random Counter application both for TM
and DDM+TM implementations. It shows the number of commits for executions with
a different number of threads and the average number of aborts for 10 executions. For
each execution the statistics are different due to the use of random in the application.
Since each execution of the application is random the statistics will follow a uniform
random distribution. Consequently, the results demonstrate that the integration of TM
with DDM behaves similarly to a normal TM implementation but cannot be used to
extract conclusions about detailed performance.

In Fig. 7 we present the difference in the execution time of the Labyrinth benchmark
when reducing the size of the transactional code inside a thread. From now on we
reference the execution of a whole transactional thread as large and the execution of a
part of the thread as transactional as small. We observe that on average the execution
time is smaller when we declare only a part of the thread as transactional. As we
increase the number of threads we see this difference decreasing. Correlating these
results with Table 6, wherewe present the numerical results of the previous executions,
we see that when the number of aborts is the same for the two executions the small
implementation is faster and when the number of aborts for the small implementation
exceeds the number of aborts of the large implementation the execution times are

Table 5 Random counter
statistics for TM and DDM+TM
implementations

Number of threads Commits Aborts

TM DDM+TM

2 200 38 47

4 400 157 479

8 800 920 1283

Fig. 7 Comparison of complete and partially transactional threads in the Labyrinth implementation

123



Int J Parallel Prog (2016) 44:257–277 273

Table 6 Labyrinth statistics for
TM and DDM+TM
implementations

Number of threads Commits Aborts

Small Large

2 1028 18 18

4 1032 47 46

8 1040 101 99

16 1056 182 175

Fig. 8 Labyrinth’s TM routing algorithm—scalability of TFlux extended with TM

almost the same. From this correlation we conclude that the overhead of rescheduling
a whole transactional thread is higher than rescheduling a small part of the thread.
This is because the rescheduled code to be executed will be more in the former case.

Finally we present the experimental results that indicate the speedup for the
DDM+TM implementation of the Labyrinth application over the TM sequential
implementation; these are depicted in Fig. 8. From these results it is easy to observe
that for the two smaller input files (256×256×3−n256 and 256×256×5−n256) the
application scales well up to 10 threads and then starts degrading. For the largest input
file it scales beyond 10 threads with a maximum speedup of 6.2× over the sequential
implementation with TM at 12 threads. The reason for this degradation in the speedup
for more than 10 threads is that although we use a 12-core machine we also have the
TSU and the OS simultaneously running with the application and occupying one core
each [21]. As seen from Fig. 8 the scalability of the DDM+TM model is good as it
seems that at this early stage of the study there are no obvious extra overheads.

7.2 DDM+TM Overheads Analysis

To get a clear view of the integration of transactions into the Data-Flow model we cre-
ated simple scenarios where we test the TM runtime system and record the overheads
produced by monitoring shared mutable data, as well as the overheads of aborting and
rescheduling conflicting transactions. We created synthetic applications with multi-
ple threads that interact with shared data structures in order to record the overheads
produced.

123



274 Int J Parallel Prog (2016) 44:257–277

Fig. 9 Overheads of monitoring one shared variable versus monitoring all shared variables of the parallel
application

Fig. 10 Overheads of aborting conflicting transactions while monitoring one shared variable when a whole
Data-Flow thread is declared as a transaction versus a part of a Data-Flow thread to be declared as a
transaction

In the first scenario we executed a parallel application that uses shared data but will
not create any conflicts during the execution. The data of this application are shared
only for read operations, so no conflicts that require aborting of parallel transactions
will arise. The purpose of this scenario is to record the overheads when monitoring
only one such shared data structure, as opposed to monitoring all the shared data
structures of the application. Monitoring a large number of shared data structures not
only requires more hardware resources (e.g. memory) but, as shown in Fig. 9, it also
results in a large overhead in execution time. The more data structures we monitor, the
more work a TM runtime system will have to do during the execution. Although there
are no conflicts during the execution the runtime system will still consume resources
(mainly CPU time) in order tomonitor the execution and check for possible conflicting
transactions.

In another scenario we tested the granularity of a transaction relative to a Data-Flow
thread. Figure 10 shows the overhead produced when monitoring one shared variable
for two granularity levels. In the first case, we consider that a whole Data-Flow thread
will be transaction. This means that in case of a conflict the whole Data-Flow thread
will be aborted and re-executed. In the second case, we declare as a transaction only the
portion of the Data-Flow thread that actually uses the shared data structure for a write

123



Int J Parallel Prog (2016) 44:257–277 275

Fig. 11 Number of aborts of conflicting transactions while monitoring one shared variable when a whole
Data-Flow thread is declared as a transaction versus a part of a Data-Flow thread to be declared as a
transaction

operation. This is the only part of the Data-Flow thread that a conflict may arise. In
this case, if we have a conflict during the execution only that portion of the thread will
be aborted and rescheduled for execution, retaining any operations done previously
in the Data-Flow thread. This avoids re-executing any operations done previously
and did not affect the shared data monitored in any way. The results in Fig. 10 show
significant reduction of the overhead imposed when rescheduling only the portion
of the thread that uses the shared data, instead of rescheduling the whole Data-Flow
thread.

What actually happens when we reduce the granularity of a transaction is that we
reduce the scope of a conflict detection by the TM runtime system. This means that as
soon as an operation on shared data structures is executed the transaction will commit,
allowing other transactions to execute correctly and without conflicting. The number
of aborts for these two test cases are presented in Fig. 11. The results clearly state that
when reducing the scope of a conflict detection (i.e. the granularity of a transaction) the
number of conflicts and consequently the number of aborted transaction will reduce
significantly.

In the previous twofigureswe presented results for both theTM implementation and
the proposed implementation of combining the Data-Flow model with transactions.
The small variance in the results show an instability of the execution that is affected
mainly by the TM runtime system. The nature of a TM implementation is that every
execution is different from any other. The important thing that should be taken from
this is that adding Data-Flow to a software TM implementation does not add any
significant extra overhead to the performance of the TM system used. This means that
by combining the two models we do not necessarily combine the overheads of the two
models to the new proposed model.

8 Conclusions

We have reported our lessons from integrating, and performance experiments of, Data
Driven Multi-threading (DDM) with Transactional Memory (TM). DDM offers the

123



276 Int J Parallel Prog (2016) 44:257–277

benefit of discouraging sharing of mutable data while expressing large amounts of
parallelism. However, it is not always possible to avoid sharing mutable state and that
reduces parallelism in the DDM model. By adding TM to DDM, we allow further
parallelism to be exploited while introducing mutable shared state in a composable
manner.

We have extended the TFlux directives to develop Data-Flow applications with new
pragmas for TM. We have also described the extended TFlux runtime system with
functionality provided by a software TM. We have tested the new runtime system by
developing two applications that require TM: RandomCounter and an implementation
of Lee’s parallel routing algorithm.

The experiments and our reported experience indicates that, from the runtime inte-
gration point of view, existing software implementations can be integrated without
major problems. The biggest interaction and point for further exploration comes with
the scheduling. When a complete DDM thread is a single transaction, the TSU could
take ownership of the restart mechanism and reschedule the thread. In future work we
will address this and other potential optimizations aswell as explore further parallelism
in Data-Flow applications by using transactions.

We also plan on testing the overhead analysis on a hardware TM system as we
recognize that many of the overheads imposed by the software TM implementation
maybe resolvedwhenusing a hardwareTMsystem.The porting of our implementation
to a hardware TM system is a trivial task as we can directly replace the software TM
instructions with hardware TM instructions within the preprocessor, thus code for a
hardware TM system would be generated automatically.

Acknowledgments The authors would like to thankHiPEACNetwork of Excellence for the collaboration
Grant and TERAFLUX project founded by the EC with Grant Agreement Number 249013. Dr. Luján is
supported by a Royal Society University Research Fellowship.

References

1. Ansari, M., Kotselidis, C., Jarvis, K., Luján, M., Kirkham, C.C., Watson, I.: Advanced concurrency
control for transactional memory using transaction commit rate. In: Euro-Par, pp. 719–728 (2008)

2. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C.C., Watson, I.: Steal-on-abort: improving
transactional memory performance through dynamic transaction reordering. In: HiPEAC, pp. 4–18
(2009)

3. Barth, P.S., Nikhil, R.S., Arvind: M-structures: Extending a parallel, non-strict, functional language
with state. In: Proceedings of the 5th ACM conference on functional programming languages and
computer architecture, pp. 538–568. Springer, London, UK (1991). http://dl.acm.org/citation.cfm?
id=645420.652538

4. Cann, D.: Retire Fortran? A debate rekindled. Commun. ACM 35, 81–89 (1992)
5. Costas,K., Evripidou, P., Trancoso, P.:Data-drivenmultithreading using conventionalmicroprocessors.

IEEE Trans. Parallel Distrib. Syst. 17, 1176–1188 (2006)
6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of

the 6th Conference on Symposium on Opearting Systems Design and Implementation (2004)
7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Proceedings of the 20th International

Symposium on Distributed Computing (DISC) (2006)
8. Giorgi, R., Popovic, Z., Puzovic, N.: Dta-c: A decoupled multi-threaded architecture for CMP systems.

In: 19th International Symposium on Computer Architecture and High Performance Computing, 2007.
SBAC-PAD 2007, pp. 263–270 (2007)

123

http://dl.acm.org/citation.cfm?id=645420.652538
http://dl.acm.org/citation.cfm?id=645420.652538


Int J Parallel Prog (2016) 44:257–277 277

9. Gurd, J.R., Kirkham, C.C., Watson, I.: The manchester prototype dataflow computer. Commun. ACM
28, 34–52 (1985)

10. Harris, T., Larus, J., Rajwar, R.: Transactional memory. Synth. Lect. Comput. Archit. 5(1), 1–263
(2010)

11. Hogg, J.D., Reid, J.K., Scott, J.A.: Design of a multicore sparse cholesky factorization using dags.
SIAM J. Sci. Comput. 32(6), 3627–3649 (2010)

12. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming languages. ACM
Comput. Surv. 36, 1–34 (2004)

13. Jones, S.P., Gordon, A., Finne, S.: Concurrent haskell. In: Annual symposium on principles of pro-
gramming languages, pp. 295–308. ACM (1996)

14. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press, Cambridge (1990)
15. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applications for

multi-processing. In IISWC’08: Proceedings of The IEEE International Symposium on Workload
Characterization (2008)

16. Papadopoulos, G.M., Culler, D.E.: Monsoon: an explicit token-store architecture. In: Proceedings of
the 17th Annual International Symposium on Computer Architecture, ISCA’90, pp. 82–91 (1990)

17. Pascal, F., Christof, F., Torvald, R.: Dynamic performance tuning of word-based software transactional
memory. In: Proceedings of the 13thACMSIGPLANSymposiumon Principles and Practice of Parallel
Programming (PPoPP) (2008)

18. Peyton Jones, S.L.: Beautiful Concurrency (2007). http://research.microsoft.com/Users/simonpj/
papers/stm/index.htm

19. Sreeram, J., Cledat, R., Kumar, T., Pande, S.: Rstm :A relaxed consistency software transactional mem-
ory for multicores. In: International Conference on Parallel Architectures and Compilation Techniques
(2007). http://doi.ieeecomputersociety.org/10.1109/PACT.2007.62

20. Stavrou, K., Evripidou, P., Trancoso, P.: DDM-CMP: data-drivenmultithreading on a chipmultiproces-
sor. Embed. Comput. Syst. Archit. Model. Simul. 3553, 205–224 (2005)

21. Stavrou, K., Nikolaides, M., Pavlou, D., Arandi, S., Evripidou, P., Trancoso, P.: Tflux: a portable
platform for data-driven multithreading on commodity multicore systems. In: 37th International Con-
ference on Parallel Processing, pp. 25–34 (2008)

22. Syme, D., Granicz, A., Cisternino, A.: Expert F# (Expert’s Voice in.Net)
23. Giorgi, R., Badia, R.M., Bodin, F., Cohen, A., Evripidou, P., Faraboschi, P., et al.: TERAFLUX:

Harnessing dataflow in next generation teradevices. Microprocess. Microsy. 38(8),976–990 (2014)
24. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with GPU

accelerators. In: International Symposium on Parallel and Distributed Processing (2010)
25. Trancoso, P., Stavrou, K., Evripidou, P.: DDMCPP: the data-driven multithreading C pre-processor. In

Proceedings of the 11th Interact-11, pp. 32–39 (2007)
26. Watson, I., Kirkham, C., Luján, M.: A study of a transactional parallel routing algorithm. In: PACT’07

Proceedings of the 16th international conference on parallel architecture and compilation techniques,
pp. 388–398 (2007)

27. Watson, I., Woods, V., Watson, P., Banach, R., Greenberg, M., Sargeant, J.: Flagship: a parallel archi-
tecture for declarative programming. In: ISCA, pp. 124–130 (1988)

123

http://research.microsoft.com/Users/simonpj/papers/stm/index.htm
http://research.microsoft.com/Users/simonpj/papers/stm/index.htm
http://doi.ieeecomputersociety.org/10.1109/PACT.2007.62

	Integrating Transactions into the Data-Driven Multi-threading Model Using the TFlux Platform
	Abstract
	1 Introduction
	2 Related Work
	3 Data-Flow and Transactional Memory
	3.1 Data-Flow
	3.2 Transactional Memory
	3.3 Data-Flow and Transactional Memory Combined

	4 Proposed DDM+TM Implementation
	4.1 TFlux System
	4.2 TinySTM Software Library
	4.3 DDM+TM

	5 Workloads
	5.1 Random Counters
	5.2 Labyrinth Implementation of Lee's Algorithm

	6 Experimental Setup
	7 Experimental Results
	7.1 DDM+TM Applications Evaluation
	7.2 DDM+TM Overheads Analysis

	8 Conclusions
	Acknowledgments
	References




