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Abstract—Multi-core processors have renewed interest in
programming models which can efficiently exploit general
purpose parallelism. Data-Flow is one such model which has
demonstrated significant potential in the past. However, it
is generally associated with functional styles of program-
ming which do not deal well with shared mutable state.
There have been a number of attempts to introduce state
into Data-Flow models and functional languages but none
have proved able to maintain the simplicity and efficiency
of pure Data-Flow parallelism. Transactional memory is a
concurrency control mechanism that simplifies sharing data
when developing parallel applications while at the same time
promises to deliver affordable performance. In this paper we
report our experience of integrating Transactional Memory
and Data-Flow. The ability of the Data-Flow model to expose
large amounts of parallelism is maintained while Transactional
Memory provides simplified sharing of mutable data in those
circumstances where it is important to the expression of the
program. The isolation property of transactions ensures that
the exploitation of Data-Flow parallelism is not compromised.

In this study we extend the TFlux platform, a Data-Driven
Multi-threading implementation, to support transactions. We
achieve this by proposing new pragmas that allow the program-
mer to specify transactions. In addition we extend the runtime
functionality by integrating a software transactional memory
library with TFlux. To test the proposed system, we ported
two applications that require transactional memory: Random
Counter and Labyrinth an implementation of Lee’s parallel
routing algorithm. Our results show good opportunities for
scaling when using the integration of the two models.

Keywords-Programming models, Future Multi-cores, Trans-
actional Memory, Data-Flow model, Data-Driven Multi-
threading

I. INTRODUCTION

As technology delivers higher integration of devices into
processors, the multi-core design has become the de-facto
standard for processor architecture. It promises to deliver
high performance whilst maintaining an acceptable complex-
ity and power budget. The trends show a continuous increase
in the number of cores and it is expected that by 2020
processors will include 1000s of cores [1]. This will lead to
new challenges, one of them being the programmability of
such large-scale systems. If their power is to be harnessed on
the solution of a wide range of problems it will be necessary

to develop new parallel programming models which are both
efficient and easy to use.

There has recently been a re-surgence of interest in the
Data-Flow model as a way to efficiently exploit large-scale
parallelism. Even though the original implementations of
Data-Flow were not efficient, more recent developments
have overcome this [6], [9], [21]. However, the models are
suited largely to the implementation of programming styles
which are essentially purely functional. Indeed it is the
absence of side effects in functional models which permits
easy parallelisation. Unfortunately, there are many cases in
real programs where the use of shared mutable state is
either necessary for efficiency or is a fundamental part of
the problem being solved. In these circumstances, functional
approaches are unsuitable.

This limitation has long been recognised and there have
been a number of attempts to integrate state into both Data-
Flow models and functional languages. The early work
on M-structures in Id [4] added implicit locking to data
items to avoid the explicit manipulation of synchronisation.
However, this merely hid the complexity of the synchro-
nisation rather than removed it and, in many ways, made
the writing of shared state programs more error prone.
Functional languages such as SML [15] and F# [23] have
introduced mutable variables in an attempt to extend their
practicality. Unfortunately this state can rapidly destroy both
the mathematical cleanliness of the language and the ability
to exploit parallelism with Data-Flow like execution models.
Haskell originally introduced state in a more disciplined
way by the used of MONADS [14]. However, although this
enables the isolation of state via the type system and hence
preserves mathematical properties, the state manipulation is
serialised and thus does not address the problems of writing
parallel programs.

The Transactional Memory (TM) model facilitates sharing
data in a manner which isolates individual sharers from the
complexities of synchronisation. It was originally proposed
as a way of simplifying parallel programming in conven-
tional languages but has been shown to provide a clean
and simple way to add the sharing of state to a functional
language [19]. Transactional Haskell uses the MONAD
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approach to allow the expression of explicit threads within
Haskell programs by defining transactional variables which
are manipulated serially within a thread but interact in
parallel across threads. It has been shown that parallel state
based programs can be specified while maintaining much
of the purity of functional programming. It is our belief
that a more general and more usable programming model
can be produced by adding transactions to Data-Flow using
more pragmatic programming approaches and avoiding the
complexity of MONADS.

This paper reports our first experiences of integrating
transactions into a thread based Data-Flow model. We use
TFlux [22] as the Data Driven Multi-threading (DDM)
implementation and TinySTM [18] for transactional sup-
port. This merged implementation will be referred to as
DDM+TM, hereafter. We propose new TFlux directives for
defining transactional threads and variables. We also show
how it is possible to program applications with the combined
model and present a preliminary performance evaluation
study.

This paper is organized as follows, Section II describes
the concepts, the motivation and the issues of combining
the two models. Section III describes the implementation
we propose using the TFlux system and TinySTM model.
In Section IV we analyze the applications we implemented
and used for our experimental evaluation. Section V and Sec-
tion VI describe the experimental setup and the performance
scaling of two applications developed using DDM+TM. In
Section VII we discuss the conclusions and future work.

II. COMBINING DATA-FLOW WITH TRANSACTIONS

There has recently been renewed interest in the Data-
Flow approach to computation that was pioneered in late
70s and 1980s [10], [17], [5], [27], [13]. Those projects
demonstrated that it was feasible to express sufficiently large
amounts of parallelism that a significant problem was how
to throttle and schedule it. Subsequent projects, for example
TFlux [22] showed that a coarsening of the granularity (from
instructions to tasks) could result in more controllable and
more efficient parallel execution.

Numerical Linear Algebra (NLA) is one area where Data-
Flow ideas have recently been adopted. This is apparent both
in LAPACK and BLAS functionality (see, e.g. PLASMA
project [24]) and for sparse matrices [12]. NLA consti-
tutes one of the main kernels for scientific computing and
their main next challenge is how to scale to petaflop-scale
high-performance systems. The new generation of NLA
algorithms are moving towards expressing parallelism but
leaving the scheduling to the runtime trying to harness the
available combination of resources (multi-cores, many-cores,
clusters, GPUs). It has been demonstrated that a Data-Flow
execution using Parallel Linear Algebra for Scalable Multi-
core Architectures (PLASMA) can easily generate millions
of tasks.

There is a clear relation between Data-Flow computations
and parallelization of functional languages. Another highly
prominent use of functional programming techniques can
be observed in the MapReduce frameworks [7]. Provided
the map and reduce operations are side-effect free, we can
automatically parallelize their execution using a Data-Flow
approach.

Although the benefits of Data-Flow can be demonstrated
by the above applications, it is clear that there are cases
where shared state is essential. This may be because it is a
fundamental part of the program, it facilitates software de-
velopment or a pure functional execution will be inefficient
(e.g. due to memory management overheads). To overcome
these limitations, it is desirable to introduce shared mutable
state into the Data-Flow approach. However, this needs to
be done in a way which does not require the specification of
explicit synchronisation between parts of the program. This
both introduces significant programming complexity and can
often lead to unnecessary serialisation of the execution.
Therefore approaches which introduce conventional locking
are unlikely to lead to models which are either easy to use
or efficient.

Transactional Memory (TM) [11] is a model for ma-
nipulating mutable shared data which attempts to reduce
complexity by eliminating the need for explicit synchroni-
sation. It works by allowing the programmer to specify that
certain sections of a program must be executed atomically
but without the need to consider any of the synchronised
control that might be required. Execution of atomic sections
takes place optimistically, that is with an assumption that any
shared data within the section will not be changed by any
other concurrent execution. If such a conflict does occur, the
underlying runtime system ensures that only one execution
succeeds while others are transparently re-executed. This
leads to the important property of isolation. A thread always
proceeds as though it has exclusive access to any shared data
within an atomic section. All synchronisation complexity is
removed and it is unnecessary to serialise accesses to achieve
correct execution. Although, in practice, some serialisation
may occur due to the resolution of conflicts, the optimistic
nature of the model ensures that maximal parallelism is
achieved. Although TM was originally proposed to reduce
the complexity in the context of conventional threaded
programming languages, the isolation property makes it an
ideal way of introducing mutable state into Data-Flow or
functional approaches.

A common example used for motivating TM illustrates the
need for mutable shared state [19]. Consider a computation
which is trying to perform concurrent credit/debits between
bank accounts. Firstly, the state is fundamental to the
problem. The account balances must be globally accessible
variables which can be updated and persist. The credit/debit
operations must be atomic to preserve the overall correctness
of the balances. Assuming that we don’t know the identity
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Figure 1. TFlux Runtime system.

of the accounts when specifying the problem, it is clear
that the accounts might overlap and conflicts could occur. A
conventional locking approach would need to deal with the
cases where overlap might occur by taking explicit locks
and dealing with complex interactions such as deadlock.
The problem could, of course, be greatly simplified by
serialising all the operations but this would defeat the desire
to exploit parallelism. However, in many cases, there will
be no overlap and an optimistic approach can proceed with
maximal parallelism. We can envisage a Data-Flow solution
where threads have been generated to perform calculations
on each account using a purely functional approach and
then invoking a transaction to perform a balance transfer.
Any number of such threads can be generated to operate in
parallel without any need to consider how they interact.

In the TERAFLUX project [1] we are investigating how to
combine different variants of Data-Flow models (including
synchronous Data-Flow) with Transactional memory. This
paper reports our experiences with a first combination of the
data-driven runtime system, TFlux, and software TM driven
by the implementation of two applications.

III. PROPOSED DDM+TM IMPLEMENTATION

A. TFlux System

This study uses the Data-Driven Multi-threading model
and in particular its TFlux implementation [22]. TFlux is a
complete system that defines a set of ‘#pragma’ directives
to program a DDM application. TFlux includes a source-
to-source pre-processor that automatically adds calls to the
TFlux library to implement the threads and their scheduling
and a runtime system that implements the Thread Scheduling
Unit (TSU). The TSU is the unit that handles the scheduling
of threads in a Data-Flow manner. In Figure 2 we depict the
different modules of TFlux.

In order to program a DDM application with TFlux, di-
rectives must be added to regular C code. The most relevant
directives are the ones which enable a set of instructions to
be defined as a thread (see Table I). In addition it is necessary

Figure 2. The layered design of the TFlux system [22].

to define the inputs and outputs of a thread as well as the
producer and consumer relationships between threads. Using
this information the system is able to form the code for the
threads as well as the thread dependency graph, which is
the structure that needs to be loaded into the TSU for the
scheduling to be executed in a Data-Flow manner. The task
of the scheduling unit is to manage the counters that control
the firing of threads. Each time a producer thread terminates
its execution, the consumer’s counter is decremented by
one. When the counter reaches zero, all needed results have
been produced and thus the thread is ready for execution.
All these operations are part of the TFlux runtime system,
which includes all data structures required to manage the
thread scheduling as well as the scheduling code itself. The
operations of the runtime system are depicted in Figure 1.
There are hardware and software versions of the TFlux
platform. In this study we use the software version, also
called TFluxSoft, without losing generality of the system.
In TFluxSoft the TSU’s execution is handled by one core of
the multi-core system we are using.

B. TinySTM Software Library

In order to support the transactional execution, i.e. the
monitoring of the updates to variables, the conflict detection
and the restarting of the execution in case of abort, we
need to extend the TFlux runtime. Rather than developing

21

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:03:13 UTC from IEEE Xplore.  Restrictions apply. 



Table I
TFLUX DDM PRAGMA DIRECTIVES.

#pragma ddm startprogram Define the start and the end of a DDM program
#pragma ddm endprogram
#pragma ddm block ID Define the start and the end of a block of threads with identifier ID
#pragma ddm endblock
#pragma ddm thread ID kernel NUMBER Define the boundaries of a DDM thread with identifier ID and the

kernel NUMBER to execute on#pragma ddm endthread
#pragma ddm for thread ID Define the boundaries of a DDM loop thread with identifier ID
#pragma ddm endfor
#pragma ddm kernel NUMBER Declare the number of kernels to be used
#pragma ddm var TYPE NAME Declare a shared variable with NAME and TYPE
#pragma ddm private var TYPE NAME Declare a private variable with NAME and TYPE

from scratch we preferred to extend the TFlux runtime
system with an existing software TM implementation. We
chose the TinySTM [18] as it appeared to provide a simple
approach to the integration. However, we could have used
other Software TM systems such as TL2 [8] or RSTM [20].
Within TERAFLUX, we intend to investigate other TM
implementations, including hardware support, for the scal-
ability of the execution required for large-scale Data-Flow
applications.

C. DDM+TM

When adding support for transactions to TFlux an impor-
tant decision concerned the granularity of transactions. The
simplest approach would be to declare a whole thread as a
transaction. With this option we would enhance the system
by providing the programmer with two types of threads:
pure Data-Flow threads or transactional threads. However, a
thread may contain code that needs to be transactional but
combined with non-transactional code. Furthermore, it may
be appropriate to specify several atomic regions within a
thread. This could lead to potentially wasteful aborts when
either a transaction is only a small portion of the thread
or multiple atomic regions need to be aborted together.
Therefore, we opted for providing new pragma directives
to define the beginning and end of transactional sections
within threads. These new TFlux directives are presented in
Table II.

Another design issue is how we identify variables which
are transactional. These variables will require that their
read and write operations are observed to form the read-
set and write-set during a speculative execution of the
transaction. These sets are used to detect conflicts. For
all these transactional variables we also need to version
the results to allow a clean restart of the transaction if
necessary. One option is to monitor every memory access
that is performed within a transaction. However, this is
not necessary for unshared variables, for example those
which are thread local. Therefore, in common with other
TM approaches, we explicitly declare which variables are
transactional. The directive

#pragma ddm atomic tvar(NAME : READ/WRITE)

offers such functionality. Note that each transactional vari-
able is associated within a thread with a READ, WRITE or
READ_WRITE qualifier. This qualifier provides information
on the use of the variable within the thread which can be
used by the TM implementation to optimize the execution.

For DDM+TM, we decided to have a complete separa-
tion between transactional and non-transactional variables.
Transactional variables must always be accessed within a
transaction. Non-transactional variables are normally private
to a thread during execution and thus cannot generate con-
flicts. Other non-transactional threads will only be allowed
to access a non-transactional variable if the scheduling can
guarantee independence. With this decision we avoid the
problems of weak isolation. Note that we do not modify
DDM by imposing this decision. DDM+TM could be im-
plemented without speculation by performing a scheduling
where the transactional variables are treated as inputs and
outputs of the threads that are read and written. This will
result in the sequential execution of the code in case of
threads accessing shared data where we cannot determine
the dependencies before runtime.

For transactional variables, we also provide the program-
mer with pragmas to define them within the declaration
of a transactional thread. This is required to support the
monitoring of variables that may have more than one alias
(e.g. parameter variables inside the code of a function). The
monitoring of these variables is specified as a parameter in
the thread declaration (see Table II).

As TFlux has two pragmas for declaring threads, the table
contains

#pragma ddm atomic thread ID and
#pragma ddm atomic for thread ID

declaring a transactional thread and a transactional loop
thread, respectively. The tvar(NAME : READ/WRITE) ex-
tension defines the thread variables that are transactional.

The last proposed directive
#pragma ddm atomic transaction

allows the declaration of a transaction as a portion of a
thread. For certain applications such as those considered in
this work, this offers better performance (see Section VI).

These directives are a subset of the possible ones which
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Table II
TFLUX DDM+TM PRAGMA DIRECTIVES.

#pragma ddm atomic thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

DDM+TM thread boundaries with identifier ID and the
atomic variables to monitor for either READ or WRITE

#pragma ddm atomic endthread
#pragma ddm atomic for thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

DDM+TM loop thread boundaries with identifier ID and the
atomic variables to monitor for either READ or WRITE

#pragma ddm atomic endfor
#pragma ddm atomic transaction
tvar(NAME : READ/WRITE/READ_WRITE)

DDM+TM boundaries of a transaction that is smaller than a
thread and the atomic variables to monitor for either READ
or WRITE#pragma ddm atomic endtransaction

#pragma ddm atomic tvar(NAME :
READ/WRITE/READ_WRITE)

Declare an atomic variable to monitor either for READ or WRITE

#pragma ddm atomic abort Manually abort a transaction

Table III
TFLUX DDM+TM PRAGMA DIRECTIVES CORRESPONDENCE WITH TINYSTM RUNTIME CALLS.

DDM+TM Prama Directives TinySTM runtime support
#pragma ddm atomic thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

stm_init_thread()

#pragma ddm atomic endthread stm_exit_thread()
#pragma ddm atomic for thread ID
tvar(NAME : READ/WRITE/READ_WRITE)

stm_init_thread()

#pragma ddm atomic endfor stm_exit_thread()
#pragma ddm atomic transaction
tvar(NAME : READ/WRITE/READ_WRITE)

sigjmp_buf *_e = stm_start(&_a) if
(_e != NULL) sigsetjmp(*_e, 0)

#pragma ddm atomic endtransaction stm_commit()
#pragma ddm atomic tvar(NAME :
READ/WRITE/READ_WRITE)

int temp = (int) stm_load((stm_word_t *)&NAME) OR
stm_store((stm_word_t *)&NAME, (stm_word_t *)temp)

#pragma ddm atomic abort stm_abort()

have been defined for TM [11]. However, they are enough to
implement the applications described in this paper and we
consider them to be the core directives. Extra transactional
functionality can be added by declaring

#pragma ddm atomic abort

in the case the programmer wants to manually abort a
transaction. In Table III we show the correspondence of the
proposed pragmas with the calls to the TinySTM runtime
that will automatically be generated by the preprocessor.

Finally we would like to mention the issue of scheduling.
The TFlux runtime system takes care of scheduling the
threads. The software TM also takes decisions about whether
to abort and re-execute a transaction. Previous work on TM
[3], [2] has shown that controlling the scheduling using
information about transactions can improve the performance
and reduce wasted work due to aborts. In this first attempt at
adding TM to TFlux, we have opted not to make changes in
the TSU to support transactional behavior. However, we are
investigating the possibility of offloading the re-scheduling
of an aborted transactional thread to the TSU instead of the
TinySTM system.

IV. WORKLOADS

For this proposal of transaction integration with the Data-
Flow model we have tested two applications. The Ran-
dom Counters and the Labyrinth implementation of Lee’s
algorithm from the STAMP Benchmark suite [16]. These

were originally implemented in a conventional language
using TM and are not naturally Data-Flow applications.
However, for this study we are focussing mainly on the
functionalities and overheads of the implementation rather
than the added benefits of the integration such as exploiting
implicit parallelism.

A. Random Counters

In the Random Counters application we use multiple
threads to increment the values of random array positions.
We create and initialize all elements of the array to zero.
We then spawn multiple threads to execute loop thread code.
Each loop iteration is executed in parallel and each thread
will do the same work: generate a random sequence of
numbers - that represent index positions in the array and
increment by 1 the values located in those positions. In the
code shown in Figure 3 we present the implementation of
this algorithm, where the

#pragma ddm atomic for and
#pragma ddm atomic endfor

directives define the DDM+TM thread boundaries, showing
that all the code of the thread is considered to be transac-
tional. The purpose of this algorithm is to create concurrent
accesses to memory. This will in turn create memory con-
flicts between threads trying to access the same memory
locations. In an unsynchronised parallel implementation this
execution would create a false result. In the DDM model
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#pragma ddm a t om ic f o r t h r e a d 1
t v a r ( c o u n t e r s : READ WRITE)

f o r ( cv00 = 0 ; cv00 < THREADS; cv00 ++)
{

f o r ( j = 0 ; j < numOfCounters ; j ++)
indexTM [ j ] = rand ( ) % a r r a y S i z e ;

f o r ( j = 0 ; j < numOfCounters ; j ++)
c o u n t e r s [ indexTM [ j ] ] + + ;

}
#pragma ddm a t om ic e n d f o r

Figure 3. Random Counters implementation with TFlux DDM+TM
pragma directives.

this code would have to be executed sequentially since the
dependencies cannot be defined prior to the execution (due
to the random memory accesses). By using TM we protect
the values of the shared variables and ensure that, at the end
of the execution, we will get the correct result while running
the threads in parallel.

B. Labyrinth implementation of Lee’s Algorithm

Lee’s Algorithm is used in the process of producing
an automated interconnection of electronic components. It
guarantees to find a shortest interconnection between two
points using the Expansion-Backtracking technique shown
in Figure 4.

Starting from the source point S, the grid points are
numbered by expanding a wavefront until the destination
is reached (Figure 4(a)-(e)). At each phase during the
expansion stage each grid point in the wavefront marks its
unnumbered neighbors with an increment of its value. Once
the destination D is reached, a route is traced back to the
source by following any decreasing sequence of numbered
grid points that are not used by others. Once the shortest
route has been determined, the grid points reserved for this
route cannot be used by others [26].

Figure 4. Lee’s algorithm example.

For the purpose of this work we used the Labyrinth TM
implementation of Lee’s algorithm from STAMP [16] and

#pragma ddm a t om ic f o r t h r e a d 1
f o r ( cv00 = 0 ; cv00 < THREADS; cv00 ++)
{
#pragma ddm a t om ic t r a n s a c t i o n

t v a r ( queue : READ WRITE)
[ 1 ] Get a ( S , D) p a i r from t h e

work queue
#pragma ddm a t om ic e n d t r a n s a c t i o n

#pragma ddm a t om ic t r a n s a c t i o n
t v a r ( g l o b a l g r i d : READ)

[ 2 ] Copy g l o b a l g r i d t o t h r e a d s
l o c a l g r i d s

#pragma ddm a t om ic e n d t r a n s a c t i o n

[ 3 ] Expans ion s t a g e
[ 4 ] B a c k t r a c k i n g s t a g e

#pragma ddm a t om ic t r a n s a c t i o n
t v a r ( g l o b a l g r i d : WRITE)

[ 5 ] Wr i t e s e l e c t e d r o u t e back t o
g l o b a l g r i d

#pragma ddm a t om ic e n d t r a n s a c t i o n
}
#pragma ddm a t om ic e n d f o r

Figure 5. Lee’s Algorithm pseudo-code with TFlux DDM+TM pragma
directives.

ported it to DDM+TM. In Figure 5 we present the integration
of TFlux DDM+TM pragmas into the application. Using

#pragma ddm atomic for and
#pragma ddm atomic endfor

directives we declare the boundaries of a DDM+TM thread.
In step 1 each thread will take a (S, D) pair from the global
work queue as an atomic action. In step 2 each thread will
copy the global grid to its local memory space, and in steps
3-4 each thread will execute the algorithm’s expansion and
backtracking phase locally. Finally in step 5 each thread
will write the selected route back to the global grid as an
atomic action. In order for steps 1, 2 and 5 to be executed
correctly we must ensure that no data conflicts occur on the
work queue or global grid. Declaring steps 1, 2 and 5 as
transactional code with the

#pragma ddm atomic transaction and
#pragma ddm atomic end transaction

we provide an atomic execution for those steps ensuring
that the final result will be correct. As for steps 3 and
4 the execution is done locally using only data local to
each thread. This does not require this part of the code
to be transactional and lets it execute in parallel within
the boundaries of the thread, thus avoiding the need to re-
execute non-transactional code in the event of a conflict.
This is therefore an example where not all the code of a
thread is transactional and hence need not be declared with
the transactional version of the pragma.
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Table IV
RANDOM COUNTER STATISTICS FOR TM AND DDM+TM

IMPLEMENTATIONS.

Aborts
Number of Threads Commits TM DDM+TM

2 200 38 47
4 400 157 479
8 800 920 1283

V. EXPERIMENTAL SETUP

We have evaluated the integration of TM with the Data-
Flow model using the Random Counters and Lee’s al-
gorithm described in Section IV. For Random Counters
we used a conventional multi-threaded TM implementation
as a baseline for our implementations of the DDM+TM
version of the application. In this preliminary study we are
interested in the overheads of the DDM+TM model over
the TM implementation rather than detailed performance.
For Lee’s algorithm we used the Labyrinth implementation
from [16] that uses TM calls from TinySTM and integrated
the TFlux directives to create the DDM+TM version. The
results are for the parallel DDM+TM implementation of
the applications on a 12-core machine with 2 6-core AMD
Opteron(tm) Processors 2427 running at 2200MHz. The
available memory of the system is 31GB of main memory
and 512KB of L2 cache. The system is running an Ubuntu
SMP x86-64 operating system.

The porting of the applications for the Data-Flow model
was performed using the pragma directives from [25]
of the TFlux Soft system [22] version 1.5.0. To integrate
the transactions in the applications we used the TinySTM
library. The execution time measurements were collected
using the gettimeofday system call to measure the execution
time of the section of code that has been parallelized. The
input data sizes used for each application are depicted in Ta-
ble V. All the results collected are for the Data-Flow model
implementing transactions over the baseline execution. The
baseline execution was considered to be the sequential
execution of the applications implementing transactions with
the TinySTM library. To calculate the results while avoiding
any statistical errors we used the average of 10 executions
removing the largest and the smallest execution time.

VI. EXPERIMENTAL RESULTS

In Table IV we present the statistics of the Random
Counter application both for TM and DDM+TM implemen-
tations. It shows the number of commits for executions with
a different number of threads and the average number of
aborts for 10 executions. For each execution the statistics are
different due to the use of random in the application. Since
each execution of the application is random the statistics
will follow a uniform random distribution. Consequently,
the results demonstrate that the integration of TM with DDM

Table VI
LABYRINTH STATISTICS FOR TM AND DDM+TM IMPLEMENTATIONS.

Aborts
Number of Threads Commits Small Large

2 1028 18 18
4 1032 47 46
8 1040 101 99

16 1056 182 175

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

2 4 8 16 

Ex
e

cu
ti

o
n

 t
im

e
 (

se
cs

) 

Number of threads 

Execution time of a transactional thread over the 
time for a part of the thread to be transactional 

Small 

Large 

Figure 6. Comparison of complete and partially transactional threads in
the Labyrinth implementation.

behaves similarly to a normal TM implementation but cannot
be used to extract conclusions about detailed performance.

In Figure 6 we present the difference in the execution
time of the Labyrinth benchmark when reducing the size
of the transactional code inside a thread. From now on
we reference the execution of a whole transactional thread
as large and the execution of a part of the thread as
transactional as small. We observe that on average the
execution time is smaller when we declare only a part of
the thread as transactional. As we increase the number of
threads we see this difference decreasing. Correlating these
results with Table VI, where we present the numerical results
of the previous executions, we see that when the number
of aborts is the same for the two executions the small
implementation is faster and when the number of aborts for
the small implementation exceeds the number of aborts of
the large implementation the execution times are almost the
same. From this correlation we conclude that the overhead
of rescheduling a whole transactional thread is higher than
rescheduling a small part of the thread. This is because the
rescheduled code to be executed will be more in the former
case.

Finally we present the experimental results that indi-
cate the speedup for the DDM+TM implementation of
the Labyrinth application over the TM sequential imple-
mentation; these are depicted in Figure 7. From these
results it is easy to observe that for the two smaller input
files (256x256x3-n256 and 256x256x5-n256) the application
scales well up to 10 threads and then starts degrading. For
the largest input file it scales beyond 10 threads with a max-
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Table V
EXPERIMENTAL WORKLOAD DESCRIPTION AND PROBLEM SIZES.

Benchmark Description Problem size
Random Counters Randomly increment shared values 10 updates 100 updates 1000 updates

Labyrinth Find connecting routes in a shared grid 256x256x3-n256 256x256x5-n256 512x512x7-n512

0 

1 

2 

3 

4 

5 

6 

7 

2 4 8 10 12 

Sp
e

e
d

u
p

 

Number of Threads 

Lee's algorithm speedup using TFlux and TM   

256x256x3-n256 

256x256x5-n256 

512x512x7-n512 

Figure 7. Lee’s TM routing algorithm - scalability of TFlux extended with
TM.

imum speedup of 6.2x over the sequential implementation
with TM at 12 threads. The reason for this degradation in
the speedup for more than 10 threads is that although we
use a 12-core machine we also have the TSU and the OS
simultaneously running with the application and occupying
one core each [22]. As seen from Figure 7 the scalability of
the DDM+TM model is good as it seems that at this early
stage of the study there are no obvious extra overheads.

VII. CONCLUSIONS

We have reported our lessons from integrating, and perfor-
mance experiments of, Data Driven Multi-threading (DDM)
with Transactional Memory (TM). DDM offers the benefit of
discouraging sharing of mutable data while expressing large
amounts of parallelism. However, it is not always possible to
avoid sharing mutable state and that reduces parallelism in
the DDM model. By adding TM to DDM, we allow further
parallelism to be exploited while introducing mutable shared
state in a composable manner.

We have extended the TFlux directives to develop Data-
Flow applications with new pragmas for TM. We have
also described the extended TFlux runtime system with
functionality provided by a software TM. We have tested
the new runtime system by developing two applications that
require TM: Random Counter and an implementation of
Lee’s parallel routing algorithm.

The experiments and our reported experience indicates
that, from the runtime integration point of view, existing
software implementations can be integrated without major
problems. The biggest interaction and point for further
exploration comes with the scheduling. When a complete
DDM thread is a single transaction, the TSU could take own-
ership of the restart mechanism and reschedule the thread.

In future work we will address this and other potential
optimizations as well as explore further parallelism in Data-
Flow applications by using transactions.
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