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T
he use of accelerators in compute-intensive scientific 
problems is growing rapidly: they pack a relatively large 
number of floating-point operations in a low-power 
profile, thus increasing the flop-to-watt ratio. In this 

work, we study ways of exploring the parallelism in scientific 
applications, using lattice quantum chromodynamics (QCD) 
compute kernels as our benchmark application. The parallelism 
available from the 512-wide vector units of the Xeon Phi acceler-
ator is exploited by either using compiler auto-vectorization or by 
introducing hand-coded vectorization techniques. We see a 6.6× 
increase in bandwidth for certain parts of the application, thanks 
to the compiler’s auto-vectorization, when compared to scalar 
code. In kernels where complex arithmetic operations dominate, 
hand-vectorized code outperforms the compiler’s auto-vectoriza-
tion and increases the sustained bandwidth by ≈1.8×. 

Intel MIC Architecture
The Xeon Phi coprocessor (codename Knights Corner;  
www.intel.com/content/www/us/en/processors/xeon/xeon- 
phidetail.html) is part of Intel’s Many Integrated Core (MIC) 
architecture family. Each coprocessor is equipped with 61 
processor cores connected in a high-performance on-die bi-
directional ring interconnect (see Figure 1). Each coproces-
sor includes eight memory controllers supporting up to 16 
GDDR5 channels (two per memory controller) with a theo-
retical aggregate bandwidth of 352 Gbytes/s. Each core is a 
fully functional, in-order core that supports four hardware 
threads. To reduce hot-spot contention for data among the 
cores, a distributed tag directory is implemented such that 
every physical address is uniquely mapped through a revers-
ible one-to-one address hashing function.
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The working frequency of the Xeon Phi cores 
ranges between 1 and 1.3 GHz depending on the 
model, and their architecture is based on the x86 In-
struction Set Architecture (ISA), extended with 64-bit 
addressing and 512-bit wide-vector instructions and 
registers that allow for a twofold increase in parallel-
ism compared to Advanced Vector Extensions (AVX) 
and a 4× compared to Streaming Single Instruction 
Multiple Data (SIMD) Extensions (SSE) technolo-
gies. The system used in this work (Intel Xeon Phi 
7120P) is equipped with 61 cores working at 1.238 
GHz, bringing the theoretical peak of double-preci-
sion floating-point performance to 1.208 Tflop/s. 

Each core has a 32-Kbytes L1 data cache, a 32-Kbytes 
L1 instruction cache, and a 512-Kbytes L2 cache. The 
L2 caches of all the cores are interconnected with each 
other and the memory controllers via a bidirectional 
ring bus, effectively creating a shared, cache-coherent, 
last-level cache of up to 32 Mbytes. 

The Xeon Phi’s vector processing unit (VPU) 
provides data parallelism using 512-bit wide-vector 
instructions, providing a throughput of 32 single-
precision or 16 double-precision floating-point 
operations per cycle, on each core, assuming all 
operations are fused multiply-adds (FMA). The VPU 
is an extension to the P54C core on Xeon Phi and 
communicates with the core to execute the VPU ISA 
implemented in the coprocessor.1 The core’s arithmetic 
logic unit (ALU) feeds the VPU with instructions 
while receiving data from the L1 cache via a dedicated 
512-bit bus. The VPU can read/write one vector per 
cycle from/to the vector register file or the data cache 
and it can do one load and one operation in the same 
cycle. The VPU instructions are ternary-operand 
with two sources and one destination, which can also 
act as a source for FMA instructions. This type of 
configuration provides approximately a 20 percent gain 
in performance over traditional binary-operand SIMD 
instructions. Figure 2 shows the top-level design of the 
core architecture in a Xeon Phi coprocessor. 

The Xeon Phi’s vector ISA is designed to 
address scientific, high-performance computing 
(HPC) applications. It supports both native 32-bit 
float and integer and 64-bit float operations in a 
coherent memory model in which both the Intel64 
instructions and the vector instructions operate 
on the same address space. It also supports scatter/
gather instructions to read or write sparse data in 
memory in or out of the packed vector registers. 
This feature of the vector architecture is intended 
to simplify code generation for the sparse data 
manipulations found in scientific applications. 

Experimental Evaluation
Exploiting the parallelism available in the Intel 
Xeon Phi coprocessor requires efficient utilization 
of the vector registers. The data in memory and the 
arithmetic operations therefore need to be refactored 
such that loading and storing as well as operating 
on the data can be either vectorized by the compiler 
or hand-vectorized by explicitly hand-coding the 
vector intrinsics. As a benchmark, we use two 
components from the domain of lattice QCD—
namely, a 2D stencil operation and a complex linear 
algebra operation. We execute both applications in 
coprocessor-only mode, in which the application 
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Figure 1. The Intel Xeon Phi top-level architecture. Each coprocessor is 
equipped with 61 processor cores connected in a high-performance on-die 
bidirectional ring interconnect.
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Figure 2. Top-level architecture of the cores in a Xeon Phi coprocessor. The 
dashed red line isolates the core’s vector processing unit (VPU).
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is launched explicitly only on Xeon Phi. In both 
cases, we measure the sustained bandwidth as a 
performance metric by knowing the effective number 
of bytes read and written during the total calculation 
and then dividing by the execution time. 

We compare results when using the compiler 
optimization flag for auto-vectorization to results 
when we reorder the data in a vector-friendly way, 
using vector intrinsics to manually vectorize the 
two kernels. In addition, we include, as a baseline, 
the results with the parallel implementation of the 
kernels with no vector optimizations (scalar). The 
sources for the two kernels are openly available on 
Github (https://github.com/gpucw). We also com-
pare the performance of two lattice QCD librar-
ies—the QUDA library for GPUs2 and the QPhix 
library for the Xeon processor family (https://
github.com/JeffersonLab/qphix). The project’s web-
site provides more detailed information (http://
clusterware.cyi.ac.cy). 

2D Stencil Operator 
Our first test is a 2D stencil operation that extends 
up to the nearest neighbor. The idea is to emulate 
aspects of the data reuse required in the Wilson- 
Dirac equation. More precisely, the stencil we imple-
ment resembles a discrete 2D Laplacian operation 
applied to a field f given by Equation 1:
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where x is a coordinate on a 2D grid with dimensions 
denoted by i and j, and s being a constant. This 
specific choice of normalization allows repeatedly 
applying the operator on f while keeping the 
numerical values of the elements on the same order. 
Figure 3 shows the neighboring elements of a single 
element f involved in the operation. To calculate the 
element ( )φ� x  on the left-hand side of Equation 1,  
we need to load the element f(x) and the four 
neighboring elements φ( )x i+� , φ( )x i−� , φ( )x j+� , 
and φ( )x j−�  in the 2D grid presented in Figure 3. 

Figure 4 shows the results obtained from the 
2D stencil operator. Compared to the baseline in 
our results, the compiler auto-vectorization in-
creases the bandwidth by 6.6×. In the same graph, 
we see a manually vectorized version of the same 
kernel. This kernel requires reordering the data 
such that neighboring sites are scattered over dif-
ferent registers, allowing us to hand-vectorize the 
kernel with only a small number of shuffle opera-

tions required and to use vector intrinsics for the 
load, store, and floating-point operations. 

The hand-vectorized code performs similarly to  
auto-vectorization—in some cases, it slightly under
performs. When using up to 60 threads, we pin one 
thread to a core. For the cases with 120 and 240 
threads, we oversubscribe the cores, using two or four 
threads per core, respectively, enabling us to explore 
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Figure 3. The elements involved in the stencil operation 
on site x of the 2D Laplacian. To calculate the element 
ˆ( )φ x  on the left-hand side of Equation 1, we need to 
load the element f(x) and the four neighboring elements
φ( ˆ)x i+ , φ( ˆ)x i− , φ( ˆ)x j+ , and φ( ˆ)x j−  in the 2D grid.
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Figure 4. Bandwidth performance for the 2D stencil operation. The red 
dashed line shows the baseline, that is, with no vectorization. The yellow 
bars show Xeon Phi performance when auto-vectorization is enabled; blue 
bars show a vector-friendly reordering technique on the data in combination 
with auto-vectorization. The green circles show the stencil operation’s 
performance on an Nvidia K20m GPU with the total number of CUDA 
threads on the upper x-axis.
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Simultaneous Multithreading’s (SMT’s) efficiency 
on Xeon Phi. In both the auto- and hand-vectorized 
cases, including more than one thread per core in-
creases the sustained bandwidth, indicating that SMT 
on Xeon Phi is indeed beneficial for hiding I/O laten-
cies. We note that we obtain the highest performance 
with 240 threads, exceeding 120 Gbytes/s. This 
number is consistent with the sustained bandwidth 
achieved when using simple stream benchmarks on 
Xeon Phi (https://software.intel.com/en-us/articles/
optimizing-memorybandwidth-on-stream-triad). 

For this kernel, we also implement a GPU 
version. Evaluation results show that for a small 
number of threads, GPU performance is close 
to Xeon Phi’s, but when we increase the number 
of threads on both coprocessors, Xeon Phi 
significantly outperforms the GPU. The input size 
used (2,048 × 2,048 arrays) for these tests isn’t large 
enough for the GPU to hide all memory latencies 
or to efficiently utilize all CUDA threads available. 
Even so, the GPU implementation outperforms the 
baseline implementation on Xeon Phi. 

When comparing GPU performance to that of 
Xeon Phi, it’s worth mentioning the programming 
effort devoted to each. For Xeon Phi, the data layout 
requires reordering to favor vectorization. For the 
GPU, the kernel involves copying to shared memory 
subblocks of the data within a thread block. In 
both cases, the source code requires a nonnegligible 

number of modifications. In addition, for the GPU, 
we must explicitly manage data communication 
between the CPU and the GPU; for Xeon Phi, we 
can maintain a single codebase for both, whether 
we use the compiler auto-vectorization or explicitly 
hand-code vector intrinsics. The fact that Xeon Phi’s 
vector operations are exposed as functions that can 
be called in regular C code lets us reuse common 
segments between the CPU and Xeon Phi code 
and specify the architecture at compile time. This 
produces more maintainable and self-consistent 
source code than that of the GPU, where parallel 
sections must be rewritten in CUDA kernels. 

In summary, although the programming effort 
for the GPU and Xeon Phi codes is in both cases 
moderate and approximately equivalent, we find 
better performance in our Xeon Phi implementation. 

SU(3) Multiplication Kernel 
The second kernel we test is a complex linear algebra 
operation that appears in the Wilson-Dirac operator 
in lattice QCD applications. Computationally, it 
includes the multiplication of an array of complex 
3 × 3 matrices u, with an array of complex 3 × 4 y 
vectors (y fields are vectors in color space). 

Complex number types, such as the C99 complex 
type, are usually stored as a structure or array of two 
elements, with the real part in the first element and 
the imaginary part in the second element. A complex 

Figure 5. Bandwidth performance for the SU(3) multiplication kernel for varying number of threads. We obtain 
the same performance between the baseline and auto-vectorized case, an indication that auto-vectorization isn’t 
optimizing the complex operations. Hand-vectorizing the kernel using our data reordering, on the other hand, leads to 
an almost twofold increase in the sustained bandwidth.
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multiplication therefore involves cross-terms, that is, 
multiplying the real part of the first operand with 
the imaginary part of the second operand, and vice 
versa. If this operation is to be vectorized, we need to 
reshuffle the operands’ real and imaginary parts. This 
kernel tests compiler auto-vectorization for complex 
types, as well as the improvements we can gain when 
hand-vectorizing complex operations. A subtler point 
however is the fact that a gauge link takes up 144 
bytes in double precision. If we use registers wider 
than SSE—in this case, the 512-bit MIC registers, 
not every gauge link can be aligned in memory, with 
two possible solutions being either to pad consecutive 
gauge links or to load elements of multiple gauge 
links within the same vector unit. Both solutions have 
downsides: padding simplifies the number of shuffle 
operations required because each gauge link begins on 
an aligned memory boundary but reduces the effective 
bandwidth available. No padding requires scattering 
elements of one gauge link across vector registers, 
thus complicating the required shuffle operations 
but makes better use of memory bandwidth. A third 
solution is a reordering of the gauge links depending 
on the vector register width. This involves reordering 
the array of 3 × 3 matrices such that the array’s index 
partially runs faster. 

Figure 5 presents the performance results of this 
kernel comparing the baseline code, the code with 
the auto-vectorization enabled, and the code after 
we reorder the data and use explicit vector intrinsic 
calls. We obtain the same performance between the 
baseline and auto-vectorized case, an indication 
that auto-vectorization isn’t optimizing the complex 
operations. Hand-vectorizing the kernel using our 
data reordering, on the other hand, leads to an almost 
twofold increase in the sustained bandwidth. As in 
the case of the 2D stencil operation, at the maximum 
number of threads, we achieve a sustained bandwidth 
of more than 120 Gbytes/sec, which is consistent 
with stream benchmarks. 

Figure 6 evaluates a full lattice QCD imple-
mentation of the Wilson Dslash operator. These 
results are intended to demonstrate the effect of 
combining various vectorization techniques in a 
complete application, comparing a Xeon Phi imple-
mentation with an established GPU implementa-
tion. Specifically, we compare different input sizes 
for the QPhix implementation on Xeon Phi and 
the QUDA implementation on the Nvidia GPU, 
achieving an average of 9 and 10 percent peak per-
formance on the Xeon Phi and the GPU, respec-
tively, which is consistent with the performance re-
ported in the literature.3 

A lthough hand-coding introduces additional pro-
gramming effort, the code is easy to maintain as 

a single source code for both CPUs and Xeon Phis by 
using macro directives to distinguish the architecture to 
be compiled for (scalar- or vector-based). At the same 
time, vectorizing for Xeon Phi gives a source code that 
also performs well on all Xeon-family processors and 
other architectures with wide vector units.  
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Figure 6. Comparison of sustained performance with maximum threads 
between an Intel Xeon Phi and an Nvidia GPU when running the same lattice 
QCD compute kernel, as a function of the problem size.
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