
Education
Editors: Steven F. Barrett, steveb@uwyo.edu | Rubin Landau, rubin@physics.oregonstate.edu Editors: Steven F. Barrett, steveb@uwyo.edu | Rubin Landau, rubin@physics.oregonstate.edu

November/December 2015	 Copublished by the IEEE CS and the AIP	 1521-9615/15/$31.00 © 2015 IEEE	 Computing in Science & Engineering� 83

Novel Architectures
Editors: Volodymyr Kindratenko, University of Illinois, kindr@ncsa.uiuc.edu | Pedro Trancoso, Univ. of Cyprus, pedro@cs.ucy.ac.cy

Exploiting Very-Wide Vector Processing for
Scientific Applications

Andreas Diavastos | Cyprus Institute and University of Cyprus
Giannos Stylianou and Giannis Koutsou | Cyprus Institute

T
he use of accelerators in compute-intensive scientific
problems is growing rapidly: they pack a relatively large
number of floating-point operations in a low-power
profile, thus increasing the flop-to-watt ratio. In this

work, we study ways of exploring the parallelism in scientific
applications, using lattice quantum chromodynamics (QCD)
compute kernels as our benchmark application. The parallelism
available from the 512-wide vector units of the Xeon Phi acceler-
ator is exploited by either using compiler auto-vectorization or by
introducing hand-coded vectorization techniques. We see a 6.6×
increase in bandwidth for certain parts of the application, thanks
to the compiler’s auto-vectorization, when compared to scalar
code. In kernels where complex arithmetic operations dominate,
hand-vectorized code outperforms the compiler’s auto-vectoriza-
tion and increases the sustained bandwidth by ≈1.8×.

Intel MIC Architecture
The Xeon Phi coprocessor (codename Knights Corner;
www.intel.com/content/www/us/en/processors/xeon/xeon-
phidetail.html) is part of Intel’s Many Integrated Core (MIC)
architecture family. Each coprocessor is equipped with 61
processor cores connected in a high-performance on-die bi-
directional ring interconnect (see Figure 1). Each coproces-
sor includes eight memory controllers supporting up to 16
GDDR5 channels (two per memory controller) with a theo-
retical aggregate bandwidth of 352 Gbytes/s. Each core is a
fully functional, in-order core that supports four hardware
threads. To reduce hot-spot contention for data among the
cores, a distributed tag directory is implemented such that
every physical address is uniquely mapped through a revers-
ible one-to-one address hashing function.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:38:22 UTC from IEEE Xplore. Restrictions apply.

Novel Architectures

84	 � November/December 2015

The working frequency of the Xeon Phi cores
ranges between 1 and 1.3 GHz depending on the
model, and their architecture is based on the x86 In-
struction Set Architecture (ISA), extended with 64-bit
addressing and 512-bit wide-vector instructions and
registers that allow for a twofold increase in parallel-
ism compared to Advanced Vector Extensions (AVX)
and a 4× compared to Streaming Single Instruction
Multiple Data (SIMD) Extensions (SSE) technolo-
gies. The system used in this work (Intel Xeon Phi
7120P) is equipped with 61 cores working at 1.238
GHz, bringing the theoretical peak of double-preci-
sion floating-point performance to 1.208 Tflop/s.

Each core has a 32-Kbytes L1 data cache, a 32-Kbytes
L1 instruction cache, and a 512-Kbytes L2 cache. The
L2 caches of all the cores are interconnected with each
other and the memory controllers via a bidirectional
ring bus, effectively creating a shared, cache-coherent,
last-level cache of up to 32 Mbytes.

The Xeon Phi’s vector processing unit (VPU)
provides data parallelism using 512-bit wide-vector
instructions, providing a throughput of 32 single-
precision or 16 double-precision floating-point
operations per cycle, on each core, assuming all
operations are fused multiply-adds (FMA). The VPU
is an extension to the P54C core on Xeon Phi and
communicates with the core to execute the VPU ISA
implemented in the coprocessor.1 The core’s arithmetic
logic unit (ALU) feeds the VPU with instructions
while receiving data from the L1 cache via a dedicated
512-bit bus. The VPU can read/write one vector per
cycle from/to the vector register file or the data cache
and it can do one load and one operation in the same
cycle. The VPU instructions are ternary-operand
with two sources and one destination, which can also
act as a source for FMA instructions. This type of
configuration provides approximately a 20 percent gain
in performance over traditional binary-operand SIMD
instructions. Figure 2 shows the top-level design of the
core architecture in a Xeon Phi coprocessor.

The Xeon Phi’s vector ISA is designed to
address scientific, high-performance computing
(HPC) applications. It supports both native 32-bit
float and integer and 64-bit float operations in a
coherent memory model in which both the Intel64
instructions and the vector instructions operate
on the same address space. It also supports scatter/
gather instructions to read or write sparse data in
memory in or out of the packed vector registers.
This feature of the vector architecture is intended
to simplify code generation for the sparse data
manipulations found in scientific applications.

Experimental Evaluation
Exploiting the parallelism available in the Intel
Xeon Phi coprocessor requires efficient utilization
of the vector registers. The data in memory and the
arithmetic operations therefore need to be refactored
such that loading and storing as well as operating
on the data can be either vectorized by the compiler
or hand-vectorized by explicitly hand-coding the
vector intrinsics. As a benchmark, we use two
components from the domain of lattice QCD—
namely, a 2D stencil operation and a complex linear
algebra operation. We execute both applications in
coprocessor-only mode, in which the application

Core

L2

Core

L2

GDDR
MC. . .

CoreL2

CoreL2

GDDR
MC

. . .

Core

L2

Core

L2
GDDR

MC

. . .

Core L2

Core L2

GDDR
MC

. . .

TDTD

TD
TD

TDTD

TD
TD

Figure 1. The Intel Xeon Phi top-level architecture. Each coprocessor is
equipped with 61 processor cores connected in a high-performance on-die
bidirectional ring interconnect.

Instr.
decode

Scalar
unit

Vector
unit

Scalar
registers

Vector
registers

L1L2Ring

Figure 2. Top-level architecture of the cores in a Xeon Phi coprocessor. The
dashed red line isolates the core’s vector processing unit (VPU).

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:38:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 85

is launched explicitly only on Xeon Phi. In both
cases, we measure the sustained bandwidth as a
performance metric by knowing the effective number
of bytes read and written during the total calculation
and then dividing by the execution time.

We compare results when using the compiler
optimization flag for auto-vectorization to results
when we reorder the data in a vector-friendly way,
using vector intrinsics to manually vectorize the
two kernels. In addition, we include, as a baseline,
the results with the parallel implementation of the
kernels with no vector optimizations (scalar). The
sources for the two kernels are openly available on
Github (https://github.com/gpucw). We also com-
pare the performance of two lattice QCD librar-
ies—the QUDA library for GPUs2 and the QPhix
library for the Xeon processor family (https://
github.com/JeffersonLab/qphix). The project’s web-
site provides more detailed information (http://
clusterware.cyi.ac.cy).

2D Stencil Operator
Our first test is a 2D stencil operation that extends
up to the nearest neighbor. The idea is to emulate
aspects of the data reuse required in the Wilson-
Dirac equation. More precisely, the stencil we imple-
ment resembles a discrete 2D Laplacian operation
applied to a field f given by Equation 1:

() { () [φ
σ
φ σ φ φ

φ

� � �x x x i x i

x j

=
+

+ +()+ −()

+ +

1
1 4

�� �()+ −()φ x j]}, � (1)

where x is a coordinate on a 2D grid with dimensions
denoted by i and j, and s being a constant. This
specific choice of normalization allows repeatedly
applying the operator on f while keeping the
numerical values of the elements on the same order.
Figure 3 shows the neighboring elements of a single
element f involved in the operation. To calculate the
element ()φ� x on the left-hand side of Equation 1,
we need to load the element f(x) and the four
neighboring elements φ()x i+� , φ()x i−� , φ()x j+� ,
and φ()x j−� in the 2D grid presented in Figure 3.

Figure 4 shows the results obtained from the
2D stencil operator. Compared to the baseline in
our results, the compiler auto-vectorization in-
creases the bandwidth by 6.6×. In the same graph,
we see a manually vectorized version of the same
kernel. This kernel requires reordering the data
such that neighboring sites are scattered over dif-
ferent registers, allowing us to hand-vectorize the
kernel with only a small number of shuffle opera-

tions required and to use vector intrinsics for the
load, store, and floating-point operations.

The hand-vectorized code performs similarly to
auto-vectorization—in some cases, it slightly under
performs. When using up to 60 threads, we pin one
thread to a core. For the cases with 120 and 240
threads, we oversubscribe the cores, using two or four
threads per core, respectively, enabling us to explore

φ (x – j)ˆ

φ (x + j)ˆ

φ (x + i)ˆ

φ (x – i)ˆ

φ (x)

Figure 3. The elements involved in the stencil operation
on site x of the 2D Laplacian. To calculate the element
ˆ()φ x on the left-hand side of Equation 1, we need to
load the element f(x) and the four neighboring elements
φ(ˆ)x i+ , φ(ˆ)x i− , φ(ˆ)x j+ , and φ(ˆ)x j− in the 2D grid.

8 16 32 64 128 256 512 1024

0

20

40

60

80

100

120

140

1 4 8 16 30 60 120 240

Number of CUDA Threads

B
an

dw
id

th
 (

G
by

te
s/

s)

Number of Xeon Phi threads

Auto-vectorization

Reordered data

Baseline

Nvidia K20m

Figure 4. Bandwidth performance for the 2D stencil operation. The red
dashed line shows the baseline, that is, with no vectorization. The yellow
bars show Xeon Phi performance when auto-vectorization is enabled; blue
bars show a vector-friendly reordering technique on the data in combination
with auto-vectorization. The green circles show the stencil operation’s
performance on an Nvidia K20m GPU with the total number of CUDA
threads on the upper x-axis.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:38:22 UTC from IEEE Xplore. Restrictions apply.

Novel Architectures

86	 � November/December 2015

Simultaneous Multithreading’s (SMT’s) efficiency
on Xeon Phi. In both the auto- and hand-vectorized
cases, including more than one thread per core in-
creases the sustained bandwidth, indicating that SMT
on Xeon Phi is indeed beneficial for hiding I/O laten-
cies. We note that we obtain the highest performance
with 240 threads, exceeding 120 Gbytes/s. This
number is consistent with the sustained bandwidth
achieved when using simple stream benchmarks on
Xeon Phi (https://software.intel.com/en-us/articles/
optimizing-memorybandwidth-on-stream-triad).

For this kernel, we also implement a GPU
version. Evaluation results show that for a small
number of threads, GPU performance is close
to Xeon Phi’s, but when we increase the number
of threads on both coprocessors, Xeon Phi
significantly outperforms the GPU. The input size
used (2,048 × 2,048 arrays) for these tests isn’t large
enough for the GPU to hide all memory latencies
or to efficiently utilize all CUDA threads available.
Even so, the GPU implementation outperforms the
baseline implementation on Xeon Phi.

When comparing GPU performance to that of
Xeon Phi, it’s worth mentioning the programming
effort devoted to each. For Xeon Phi, the data layout
requires reordering to favor vectorization. For the
GPU, the kernel involves copying to shared memory
subblocks of the data within a thread block. In
both cases, the source code requires a nonnegligible

number of modifications. In addition, for the GPU,
we must explicitly manage data communication
between the CPU and the GPU; for Xeon Phi, we
can maintain a single codebase for both, whether
we use the compiler auto-vectorization or explicitly
hand-code vector intrinsics. The fact that Xeon Phi’s
vector operations are exposed as functions that can
be called in regular C code lets us reuse common
segments between the CPU and Xeon Phi code
and specify the architecture at compile time. This
produces more maintainable and self-consistent
source code than that of the GPU, where parallel
sections must be rewritten in CUDA kernels.

In summary, although the programming effort
for the GPU and Xeon Phi codes is in both cases
moderate and approximately equivalent, we find
better performance in our Xeon Phi implementation.

SU(3) Multiplication Kernel
The second kernel we test is a complex linear algebra
operation that appears in the Wilson-Dirac operator
in lattice QCD applications. Computationally, it
includes the multiplication of an array of complex
3 × 3 matrices u, with an array of complex 3 × 4 y
vectors (y fields are vectors in color space).

Complex number types, such as the C99 complex
type, are usually stored as a structure or array of two
elements, with the real part in the first element and
the imaginary part in the second element. A complex

Figure 5. Bandwidth performance for the SU(3) multiplication kernel for varying number of threads. We obtain
the same performance between the baseline and auto-vectorized case, an indication that auto-vectorization isn’t
optimizing the complex operations. Hand-vectorizing the kernel using our data reordering, on the other hand, leads to
an almost twofold increase in the sustained bandwidth.

0

20

40

60

80

100

120

140

1 4 8 16 30 60 120 240

B
an

dw
id

th
 (

G
by

te
s/

s)

No. threads

Auto-vectorization

Reordered data

Baseline

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:38:22 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/cise			 	� 87

multiplication therefore involves cross-terms, that is,
multiplying the real part of the first operand with
the imaginary part of the second operand, and vice
versa. If this operation is to be vectorized, we need to
reshuffle the operands’ real and imaginary parts. This
kernel tests compiler auto-vectorization for complex
types, as well as the improvements we can gain when
hand-vectorizing complex operations. A subtler point
however is the fact that a gauge link takes up 144
bytes in double precision. If we use registers wider
than SSE—in this case, the 512-bit MIC registers,
not every gauge link can be aligned in memory, with
two possible solutions being either to pad consecutive
gauge links or to load elements of multiple gauge
links within the same vector unit. Both solutions have
downsides: padding simplifies the number of shuffle
operations required because each gauge link begins on
an aligned memory boundary but reduces the effective
bandwidth available. No padding requires scattering
elements of one gauge link across vector registers,
thus complicating the required shuffle operations
but makes better use of memory bandwidth. A third
solution is a reordering of the gauge links depending
on the vector register width. This involves reordering
the array of 3 × 3 matrices such that the array’s index
partially runs faster.

Figure 5 presents the performance results of this
kernel comparing the baseline code, the code with
the auto-vectorization enabled, and the code after
we reorder the data and use explicit vector intrinsic
calls. We obtain the same performance between the
baseline and auto-vectorized case, an indication
that auto-vectorization isn’t optimizing the complex
operations. Hand-vectorizing the kernel using our
data reordering, on the other hand, leads to an almost
twofold increase in the sustained bandwidth. As in
the case of the 2D stencil operation, at the maximum
number of threads, we achieve a sustained bandwidth
of more than 120 Gbytes/sec, which is consistent
with stream benchmarks.

Figure 6 evaluates a full lattice QCD imple-
mentation of the Wilson Dslash operator. These
results are intended to demonstrate the effect of
combining various vectorization techniques in a
complete application, comparing a Xeon Phi imple-
mentation with an established GPU implementa-
tion. Specifically, we compare different input sizes
for the QPhix implementation on Xeon Phi and
the QUDA implementation on the Nvidia GPU,
achieving an average of 9 and 10 percent peak per-
formance on the Xeon Phi and the GPU, respec-
tively, which is consistent with the performance re-
ported in the literature.3

A lthough hand-coding introduces additional pro-
gramming effort, the code is easy to maintain as

a single source code for both CPUs and Xeon Phis by
using macro directives to distinguish the architecture to
be compiled for (scalar- or vector-based). At the same
time, vectorizing for Xeon Phi gives a source code that
also performs well on all Xeon-family processors and
other architectures with wide vector units.

Acknowledgments
A. Diavastos and G. Stylianou are supported by the
Cyprus Research Promotion foundation, under project
“GPU Clusterware”(TPE/PLHPO/0311(BIE)/09).

References
1.	R. Rahman, Intel Xeon Phi Coprocessor Architecture

and Tools: The Guide for Application Developers,
Apress, 2013.

2.	R. Babich, M.A. Clark, and B. Joo, “Parallelizing the
QUDA Library for Multi-GPU Calculations in Lattice
Quantum Chromodynamics,” Proc. IEEE Int’l Conf.
High Performance Computing, Networking, Storage and
Analysis (SC), 2010, pp. 1–11.

3.	B. Joo et al., “Lattice QCD on Intel Xeon Phi
Coprocessors,” Supercomputing, Springer, 2013,
pp. 40–54.

Andreas Diavastos is a research assistant at the Cyprus In-
stitute and a PhD candidate at the University of Cyprus.
Contact him at diavastos@cs.ucy.ac.cy.

Giannos Stylianou is a research assistant at the Cyprus
Institute. Contact him at g.stylianou@cyi.ac.cy.

Giannis Koutsou is an Assistant Professor at the Cyprus
Institute. Contact him at g.koutsou@cyi.ac.cy.

0

50

100

150

200

250

300

16x16x16 32x32x32 48x48x48

P
er

fo
rm

an
ce

 (
G

FL
O

P
/s

)

Input size

Intel Xeon Phi Nvidia Tesla K20m

Figure 6. Comparison of sustained performance with maximum threads
between an Intel Xeon Phi and an Nvidia GPU when running the same lattice
QCD compute kernel, as a function of the problem size.

Authorized licensed use limited to: Cyprus University of Technology. Downloaded on March 16,2025 at 06:38:22 UTC from IEEE Xplore. Restrictions apply.

