
Auto-tuning Static Schedules for Task Data-flow Applications
Andreas Diavastos

Department of Computer Science
University of Cyprus
diavastos@cs.ucy.ac.cy

Pedro Trancoso
Department of Computer Science, University of Cyprus
CSE Department, Chalmers University of Technology

pedro@cs.ucy.ac.cy

ABSTRACT
Scheduling task-based parallel applications on many-core proces-
sors is becomingmore challenging and has received lots of attention
recently. The main challenge is to efficiently map the tasks to the
underlying hardware topology using application characteristics
such as the dependences between tasks, in order to satisfy the
requirements. To achieve this, each application must be studied
exhaustively as to define the usage of the data by the different tasks,
that would provide the knowledge for mapping tasks that share
the same data close to each other. In addition, different hardware
topologies will require different mappings for the same application
to produce the best performance.

In this work we use the synchronization graph of a task-based
parallel application that is produced during compilation and try to
automatically tune the scheduling policy on top of any underlying
hardware using heuristic-based Genetic Algorithm techniques. This
tool is integrated into an actual task-based parallel programming
platform called SWITCHES and is evaluated using real applications
from the SWITCHES benchmark suite. We compare our results with
the execution time of predefined schedules within SWITCHES and
observe that the tool can converge close to an optimal solution with
no effort from the user and using fewer resources.

KEYWORDS
Task Parallelism, Data-flow, Auto-tuning, Genetic Algorithm

ACM Reference Format:
Andreas Diavastos and Pedro Trancoso. 2017. Auto-tuning Static Schedules
for Task Data-flow Applications. In ANDARE ’17: 1st Workshop on Autotun-
iNgSystems, September 9, 2017, Portland, OR, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3152821.3152879

1 INTRODUCTION
In this newmany-core era we observe a trend for increasing number
of cores in a processor as the way to deliver computational power
in an efficient and scalable way. Programming models and runtime
systems are adapting to this new reality as to allow users to fully
exploit the available resources. Nevertheless, programming and
managing resources for these systems is becoming an increasingly
difficult task.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ANDARE ’17, September 9, 2017, Portland, OR, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5363-2/17/09. . . $15.00
https://doi.org/10.1145/3152821.3152879

 0

 100

 200

 300

 400

 500

 600

No Dependencies Dependencies

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Hand-coded Round-Robin Random

Figure 1: Execution time of Round-Robin and Random poli-
cies compared to hand-coding an optimum schedule for syn-
thetic kernels implemented in SWITCHES. This test was per-
formed on an Intel Xeon Phi using 240 threads.

Designing a parallel program has its degree of difficulty. Several
programming models have been proposed to alleviate this problem.
The current trend that seems to be more appropriate to exploit
large degree of parallelism in an application is to specify the pro-
gram as a set of tasks which may also be related with each other by
data-flow dependences. Many runtime and programming systems
today support the task-based model of execution with the most
widely known system to be the latest release of OpenMP v4.5 [14].
Analyzing the original code and generating these tasks and depen-
dences is already a difficult task. Nevertheless, as systems increase
their scale, it is not only the number of processing elements that
increase but also the heterogeneity of the system as a whole. Thus,
the allocation of tasks to resources becomes a huge challenge. The
challenge is not only to address runtime dynamic behavior of the
tasks but also to determine a schedule of the tasks that results in
the best execution time, as for example, a task that produces data
that is consumed by another task should be co-located in the same
resource or placed nearby as to avoid or reduce the data transfer
overhead. Given the complexity of the underlying infrastructure
and of the synchronization graph representing an application, this
mapping is a difficult problem to solve.

Figure 1 shows the performance of Round-Robin and Random
schedules for two synthetic task-based kernels (one without de-
pendences and one with dependences between a number of tasks),
compared to hand-coding an optimum schedule. Hand-coding an
efficient schedule of any application requires a highly experienced
programmer with significant knowledge of the application charac-
teristics (tasks, dependences and data usage) and the underlying
hardware. Results show that in such a scenario, execution time can
be reduced by as much as 2x . Nevertheless, the complexity and the
variety of both applications and hardware systems increases with
time and make the Handcoded scenario an unfeasible solution.

https://doi.org/10.1145/3152821.3152877
https://doi.org/10.1145/3152821.3152877
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3152821.3152879&domain=pdf&date_stamp=2017-09-09

ANDARE ’17, September 9, 2017, Portland, OR, USA Andreas Diavastos and Pedro Trancoso

Therefore, for future complex applications and large-scale paral-
lel systems, we propose to use a machine-learning approach as to
determine a task-to-resource mapping, that will take into account
both the application and the hardware characteristics. We propose a
technique that uses a Genetic Algorithm (GA) where the population
is composed of different task-to-resource assignment schedules and
the generations evolution is guided by the evaluation metrics (e.g.
execution time or energy consumption) as to converge to the best
schedule, depending on the metric defined by the user. We integrate
the GA with an actual parallel programming and runtime system,
thus the iteration over the different steps of the optimization such
as creation of new schedules, execution and evaluation, are exe-
cuted in an autonomic way, on real applications. The final schedule
is determined automatically by the process, but this is not without
cost as it requires the execution of the application several times.
In our work we choose carefully the initial population so that the
GA converges faster towards the better schedule. We foresee this
optimization step as being done either ahead of the execution of
the real application, in an initialization/setup phase of the system
and application tuning, or as part of a scenario where the same
application is to be executed multiple times on the same system
and each time it executes its metrics results are stored and used by
the GA to improve the schedule for the future runs.

The main contribution of this work is the integration of a well
known GA (NSGA-II [16]) in a real parallel programming and run-
time task-based system (SWITCHES [5]) that offers an auto-tuning
scheduling tool for parallel applications. This integration, allows
the sharing of the application synchronization graph with the auto-
tuning tool to use it to extract information about the tasks, their
dependences and their data usage. The SWITCHES runtime system
uses a static scheduler and avoids any interference in the execution
of other runtime overheads as to isolate the auto-tuning process
for better understanding of the results. The auto-tuning tool is
designed and implemented to optimize schedules for execution
time, power consumption and temperature. Because the NSGA-II
algorithm used is a multi-objective GA, the tool also supports the
optimization of schedules for any combination of the above metrics.

We tested the proposed approach on a real system using real
applications and we observed that the auto-tuning tool was able
to select the best schedule for most of the scenarios with improve-
ments to the best default original schedules. It also manages to
find solutions that produce the same performance while using less
resources than the default original schedules.

This paper is organized as follows: in Section 2we briefly describe
the SWITCHES programming platform, in Section 3 we describe the
GA implemented for this work and in Section 4 we describe how
we integrated the two into a single tool. In Section 5 we present
our evaluation of this integration, while in Section 6 we present
other GA-based scheduling works from the literature. Finally, in
Section 7 we outline our conclusions.

2 THE SWITCHES SYSTEM
SWITCHES [5] is a task-based system that uses concepts from the
Data-flow [3, 4] execution model in order to produce high-levels
of application parallelism. The SWITCHES runtime system is built
to satisfy two major requirements: (1) the scalability of application

����������	��

#pragma omp task
{…}

����������

�����������

	
���

��������	
�

�
����

����
	��	��

�
����

Task1:
checkP(task1);
…

Update(sw1);
Task2:
checkP(task2);
…

Update(sw2);

�
����������

�����

�������

001010101
010101010
101010101
101010101
011010100
101010100

����
�

Figure 2: The process of translating an application using the
SWITCHES Translator [5].

performance, and (2) the reduction of runtime overheads. To achieve
scalability, it implements a fully de-centralized runtime by evenly
distributing the scheduling operations to all software threads. To
reduce runtime overheads, tasks are assigned to threads statically
at compile-time. In addition, each task holds its own scheduling
structures that will be loaded in the scheduler during execution. Its’
design requires minimum support for dynamic scheduling of tasks,
consequently reducing runtime overheads.

SWITCHES provides an API that is an extension to the latest
OpenMP v4.5 [14]. Applications are written in C/C++with tasks and
dependences declared using the OpenMP compiler directives. The
translation of a directive-based application to a SWITCHES parallel
program is automatically done by a source-to-source tool. This tool,
called the Translator, reads the input source code embeddedwith the
directives, analyses the code and produces a Synchronization Graph
(SG) with the tasks and dependences of the application. Finally, it
produces the parallel source code to be compiled by any commodity
compiler and executed on the target platform (see Figure 2). The user
can provide as input to the Translator, the scheduling policy, that
defines how tasks are divided to participating software threads, the
assignment policy, that denotes how software threads are mapped
to hardware resources, and the number of threads, that will execute
the application.

We chose SWITCHES as our baseline programming platform
because it provides static scheduling and assignment policies that
can be defined at compile time through the Translator. This gives
us the ability to create different scheduling policies (i.e. generating
schedules using a GA) for an application before its execution and
load them to the Translator during compilation. The Translator will
then automatically produce parallel code with the provided sched-
ule. SWITCHES is an open-source platform that can be downloaded
from [1].

3 THE NSGA-II GENETIC ALGORITHM
A Genetic Algorithm is a heuristic procedure that tries to find the
optimal solution to a presented problem. The main principle of a GA
is that crossing two individuals can result an offspring that is better
than both the parents. Also, a slight mutation of the produced off-
spring can generate better individuals. The crossover mating takes
two individuals of a population as inputs and generates two new

Auto-tuning Static Schedules for Task Data-flow Applications ANDARE ’17, September 9, 2017, Portland, OR, USA

����������	
���
�
	

��������
��
	������
��
����

SelectionMutation

Crossover

Synchronization
Graph

Code
Analysis

Read Input
Source Code

GA
Auto-tune

Optimized
Scheduling

Policy

Genetic
Algorithm

Best child

Initial
Population

Fitness
Evaluation

Scheduling Policy
SG,

Metrics

Figure 3: The design of the auto-tuning tool and how it is
integrated in the SWITCHES Translator.

offsprings. This way some of the parent characteristics are main-
tained in individual offsprings in new generations. The mutation
randomly transforms an offspring that was also randomly chosen
from the set of all new offsprings produced by the crossover process.
Finally, the best solutions are selected using a fitness function and
transferred as inputs to the next generation and the next crossover
mating. A fitness function is defined upon the problem that the
GA is trying to solve and the best individual corresponds to the
one having the best fitness value. For example, in most scenarios
tested in this work the fitness function detects the smaller execution
time therefore, the best individual corresponds to the one with the
smallest execution time.

A GA is a loop that starts with an initial population and evolves
through generations using a selection followed by a sequence of
crossovers and a sequence of low-probability mutations. The loop
can terminate either by a limit on the total number of iterations or
the stability of the results defined by the fitness evaluation function.

To optimize the scheduling of the tested applications in this work,
we used an already existing and well known multi-objective genetic
algorithm, the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [2]. The NSGA-II was proposed in order to address the main
disadvantages of the previous NSGA algorithm proposed in [16].
The original NSGA algorithm suffered from high computational
complexity (O(MN 3)), lack of elitism and the need for specifying the
shared parameter. The NSGA-II alleviates the above disadvantages
and presents a solution with a fast non-dominated sorting approach
with O(MN 2) computational complexity.

The NSGA-II is using a selection operator that creates a mating
pool by combining the parent and offspring populations and select-
ing the best (with respect to the fitness function) N solutions. Being
a multi-objective algorithm the NSGA-II can also use more than
one parameter to its fitness function. It can combine the values of 2
or more variables as to select the best individuals within a popula-
tion. This can be particularly useful in scheduling problems where
more than one parameters might be important in the execution of
a task-based application (e.g. power-performance efficiency).

We omit the details of the NSGA-II implementation [2, 8] from
this paper as we are using it unmodified for this work.

Table 1: Experimental workloads description and data set
sizes.

Benchmark Description Complexity
MMULT Matrix multiply [17] 1024 · 1024
RK4 Differential equation [17] 19200

Poisson2D 5-point 2D stencil computation [18] 16384 · 128
No-Dependences Random generated tasks 1024 · 100
Dependences Random generated tasks with dependences 1024 · 100

4 AUTO-TUNING SCHEDULING
To create the auto-tuning scheduling tool, we integrated the NSGA-
II algorithm inside the SWITCHES Translator. Figure 3 shows the
design of this integration and how the GA works together with
the Translator to produce an optimized schedule for any input
application. The directive-based source code of the application is
given to the Translator as it would normally happen for a SWITCHES
program. The Translator then analyzes the code and produces its SG.
The SG is then passed to the Genetic Algorithm Component (GAC),
that implements the NSGA-II. The GAC also needs some parameters
that are required for the GA execution. These parameters are: (i) the
number of generations to execute the algorithm, (ii) the size of the
population for each generation, (iii) the objectives that the fitness
function will use to evaluate each schedule and (iv) the mutation
and crossover probabilities.

The number of generations and the size of each population can
be explicitly defined by the user. The values are based on the cost
tolerance accepted by the user for a specific application. The larger
the size of a population or the more generations requested, the
more time it will take for the auto-tuning tool to finish and produce
a schedule that is optimal. The fitness objectives are used by the
GAC to evaluate each produced schedule and rank it in the cur-
rent population. The objectives currently supported by the tool are
performance (execution time), power consumption and processor
temperature. The tool ranks the produced schedules in a popula-
tion based on the objective chosen by the user. As mentioned in
Section 3, the NSGA-II is a multi-objective algorithm that allows
using multiple objectives to decide the classification of the fitness
evaluation. Therefore, the user can chose more than one objective
to be considered for the evaluation fitness of the population. Fi-
nally, the mutation and crossover probabilities are usually decided
empirically as they are affected by the problem that is to be solved.

When the GAC receives the SG and the GA parameters, it pro-
duces an initial population with random schedules. As an optimiza-
tion we include the default SWITCHES [5] schedules in the initial
population. The GAC then starts executing the application with
each schedule in the population and stores the evaluation results
when the execution is finished (fitness evaluation). At the end of
each generation, each schedule is ranked based on the objective/s
requested. If, for example, the objective is performance, the sched-
ules are ranked in ascending order, starting with the schedule that
produces the smallest execution time. At the Selection stage, the
GAC implements a tournament selection process [11] that uses this
ranking to decide which schedules in the population should be used
for the Crossover, that are then used to create the population of the
next generation. When the new generation is created, a Mutation

ANDARE ’17, September 9, 2017, Portland, OR, USA Andreas Diavastos and Pedro Trancoso

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20 25 30 35 40 45 50

Random

Round-Robin

Handcoded

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

Task-No-Dependences - 240 tasks (1024x100)

Figure 4: The execution times for the No-Dependences syn-
thetic kernel. The dotted line shows the results obtained by
the auto-tuning tool for 50 generations. The produced sched-
ule converges within 15% of the optimal scenario, while it
uses 30% less computational resources.

function is applied to the population that alters one or more val-
ues of a schedule. The mutation process is useful to maintain the
genetic diversity from one generation to the next. Based on the
mutation probability, it is likely that one or more schedules don’t
change from one generation to the next.

When the GAC execution reaches the limit of generations defined
by the user, the best ranked policy is identified and passed back to
the Translator to produce the parallel source code. This schedule is
also stored in a text file, that can be loaded by the Translator at a
later time.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
This auto-tuning tool is evaluated on a set of 3 data- and task-
parallel real applications from the SWITCHES evaluation suite. We
also tested two computation kernels with randomly generated task
graphs (No-Dependences and Dependences). The former allows fully
parallel execution of the tasks without imposing any kind of depen-
dences between them, while the latter represents a synthetic kernel
with randomly generated dependences between tasks. Details for
all the application and their input sizes are shown in Table 1. The
complexity column represents the total number of computation
iterations each application executes on its data.

The data-parallel applications used are : (1) MMULT, implements
a matrix multiplication algorithm [17] and (2) RK4, solves a differen-
tial equation [17]. The task-parallel application used is Poisson2D,
a 5-point 2D stencil computational kernel of the Poisson equation
from the KASTORS Benchmark suite [18].

Our evaluation platform is an Intel Xeon Phi 7120P with 61
cores and 4 threads per core (totaling 244 hardware threads). Note
that we only used 60 cores as to avoid any interference with the
OS that always uses the last core of the system. This board has
a total of 16GB of main memory and runs at 1.238GHz. To cross-
compile applications for the Xeon Phi we use the Intel icc v.17.0.2
compiler (and the corresponding libiomp5 library) with the -mmic
flag indicating the Many Integrated Architecture (MIC) target and
the -O3 optimization flag. The results are presented as execution
time that is collected using the gettimeofday system call that

 0

 100

 200

 300

 400

 500

 5 10 15 20 25 30 35 40 45 50

Random

Round-Robin

Handcoded

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

Task-Dependences - 240 tasks (1024x100)

Figure 5: The execution times for the Dependences synthetic
kernel. The dotted line shows the results obtained by the
auto-tuning tool for 50 generations. The produced schedule
converges within 10% of the optimal scenario, while it uses
30% less computational resources.

provides a resolution of microsecond. The time is measured from
the start of the first parallel function until the last, including all
runtime costs (such as thread creation and scheduler initialization).

The parameters used for the GA algorithm are 10 generations for
the real applications tested and 50 for the synthetic kernels. Each
generation has a population of 64 schedules. The mutation and
crossover probabilities are 0.0001 and 0.6 respectively. We decided
on these values based on our study of the literature and small scale
testing scenarios with various other values that show that beyond
these values, no significant difference is observed. It is important
to notice that different problems require different values, therefore
for new applications it is important to test various options.

5.2 Synthetic Applications
We evaluated the synthetic kernels using two SWITCHES prede-
fined policies, Round-Robin that assigns equal number of tasks to all
threads in a round-robin way and Random that assigns the tasks to
the threads in random way. We also analyzed the synthetic kernels
to find the data usage of the tasks in both of them and the task
dependences in the second kernel. We used this information to
create a Handcoded scheduling policy that we deem as the optimal
scenario. Results of these executions are shown in Figures 4 and 5.
Running the synthetic kernels through the auto-tuning tool shows
that it can converge close to the optimal scenario (within 15% for
the No-Dependences and 10% for the Dependences scenarios) and
in both cases achieves better performance than the original prede-
fined SWITCHES policies. We observe that the kernel with the task
dependences requires more generations of the algorithm and this
happens due to the dependences between the tasks and complexity
of its SG.

In addition, an important outcome of these scenarios is that
the schedule produced by the auto-tuning tool that is near the
optimal Handcoded schedule is achieved by using 30% less com-
puting resources. Scenarios Random, Round-Robin and Handcoded
are using all 240 hardware threads of the system, while the sched-
ule of the auto-tuning tool is using 168 hardware threads for the
No-Dependences and 166 hardware threads for the Dependences.

Auto-tuning Static Schedules for Task Data-flow Applications ANDARE ’17, September 9, 2017, Portland, OR, USA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5 6 7 8 9 10

Round-Robin

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

MMULT - 1024x1024 - 240 threads

Figure 6: The performance achieved by the auto-tuning tool
for MMULT is the same as what is already achieved by the
Round-Robin policy of SWITCHES.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

Round-Robin

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

RK4 - 19200 - 240 threads

Figure 7: The performance achieved by the auto-tuning tool
for RK4 is the same as what is already achieved by the
Round-Robin policy of SWITCHES.

5.3 Data-Parallel Applications
In this scenario we used two data-parallel application from the
SWITCHES benchmark suite, MMULT and RK4. The results are
shown in Figures 6 and 7 respectively. The data set of both applica-
tions is equally divided to all tasks with most of the tasks using their
own data. In the cases that tasks share data, they are shared in a
consecutive way. That is, consecutive tasks share data from consec-
utive memory locations. Therefore, the best policy is to assign tasks
in a consecutive way. This is exactly what the Round-Robin policy
does and this is why we see no extra benefit achieved from the
auto-tuning tool. Finally, in contrast to the synthetic kernels pre-
sented earlier, for these data-parallel applications, the auto-tuning
tool chooses to use all hardware resources available to achieve the
performance shown.

5.4 Task-Parallel Applications
In this scenario we used the Poisson2D, a task-parallel application
from the SWITCHES benchmark suite. This application achieves
its highest speedup with the default SWITCHES schedule at 32
hardware threads (on an Intel Xeon Phi system). It also shows
significant performance loss for any number of threads greater than
32. In Figure 8 we run the auto-tuning tool for only 32 hardware
threads and observe a small performance improvement compared
to the default SWITCHES schedule. Studying the policy produced by
the auto-tuning tool, we see that it chooses to use hardware threads
that belong to the same core, while the Round-Robin policy in this
case is using separate cores for each of the 32 hardware threads

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10

Round-Robin

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

Poisson2D - 16384x128 - 32 threads

Figure 8: The auto-tuning tools slightly reduces the execu-
tion time by using hardware threads from the same cores, in
contrast to theRound-Robin policy that uses different cores.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10

Round-Robin

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

Poisson2D - 16384x128 - 240 threads

Figure 9: The execution time of Poisson2D when using all
available resources is reduce by 2× when using the auto-
tuning tool. The tool also achieves this by using only 70%
of the total hardware resources.

used. The auto-tuning tool chooses to place depended tasks that
share the same data on the same cores and thus minimizes the data
transfer overhead.

As explained earlier, using all the hardware resources for Pois-
son2D with SWITCHES results in decreasing performance due to
algorithmic limitations of the application and inefficient assignment
of the tasks by the SWITCHES default policy. Figure 9 shows the
results of the auto-tuning tool for a Poisson2D execution using 240
threads. The auto-tuning tool finds a schedule that significantly
increases the performance and achieves a 2× improvement com-
pared to the default Round-Robin policy. Similar to the case of the
synthetic kernels presented earlier, this results is achieved by using
30% less hardware resources.

5.5 Seed Optimization
As explained in Section 4, in its initial population the auto-tuning
tool includes the default schedules that SWITCHES can produce.
We found that using the default schedules as a starting point for the
auto-tuning tool reduces the size of the search space of the GAC
and improves the convergence speed to an optimal solution. This is
especially important in many-core systems where the search space
of the auto-tuning tool (i.e. the number of resources) will be very
large, as in such a case the number of combinations of resources
that create a possible schedule will also be large. Figure 10 shows
results of this optimization tested with MMULT.

ANDARE ’17, September 9, 2017, Portland, OR, USA Andreas Diavastos and Pedro Trancoso

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 5 10 15 20 25 30

No Seed Optimzation

With Seed Optimization

E
xe

cu
tio

n
T

im
e

(m
se

cs
)

Generations

MMULT - 1024x1024 - 240 threads

Figure 10: The auto-tuning tools performs better when we
include the SWITCHES predefined assignment policies in its
initial population.

5.6 Summary
Summarizing our results, we conclude that the auto-tuning tool:

• Improves the performance of task-based applications with
data access patterns that are driven by complex dependences,
as it chooses to place depended tasks that share the same data
on the same cores as to minimize the data transfer overhead;

• Can achieve maximum performance using fewer resources
thanwhat is available andwhat is used by the default policies,
therefore improving the efficiency of the system.

6 RELATEDWORK
The task scheduling problem is a well studied field and appears
numerous times in the literature. Focusing our background search
in GAs or even the more general heuristic-based solutions for task
scheduling problems we observed a large number of algorithms
proposed to solve different scheduling problems [6, 7, 9, 10, 12, 13,
15, 19, 20]. All these algorithms are implemented and tested on
multi-processor systems. Some are targeting heterogeneous sys-
tems with computation units with variable capabilities and other
were proposed for homogeneous parallel systems. What all these
have in common though is that they are all tested using randomly
generated task graphs and are implemented and evaluated as sim-
ulations. In contrast, in our work we implement a GA within a
parallel programming and runtime system that allows for using it
with real applications and producing schedules for real hardware
systems.

7 CONCLUSIONS
In this work we developed a tool for auto-tuning task-based par-
allel applications by taking into account the tasks to be executed
and their dependences. We achieved this by integrating a well-
known GA (NSGA-II) within the SWITCHES programming tool (the
Translator). SWITCHES uses static schedules to execute the tasks in
parallel, thus allowing us to feed the Translator with any policy we
wish during compilation. This allowed us to implement a GA that
produces schedules that are fed to the Translator and evaluated at
the same time.

While the auto-tuning tool comes with the cost of executing
the application several times, it will produce an optimal schedule
without any user knowledge of either the application or the target

system. Our results show that performance is improved, especially
for application with complex dependences whose data accesses
are driven by task dependences. We also observe that maximum
performance can be achieved by using significantly less resources
than what is available and what the default scheduling policies
use. This improves the efficiency of the execution as higher per-
formance with fewer resources results in a reduction of the power
consumption.

REFERENCES
[1] Andreas Diavastos. 2017. SWITCHES Platform. https://github.com/diavastos/

SWITCHES. (2017). [Online].
[2] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (Apr 2002), 182–197. https://doi.org/10.1109/4235.996017

[3] J. B. Dennis. 1974. First version of a data flow procedure language. In Programming
Symposium. Springer, 362–376.

[4] J. B. Dennis and D. P. Misunas. 1975. A Preliminary Architecture for a Basic
Data-flow Processor. In Proceedings of the 2nd Annual Symposium on Computer
Architecture (ISCA ’75). ACM, New York, NY, USA, 126–132.

[5] Andreas Diavastos and Pedro Trancoso. 2017. SWITCHES: A Lightweight Run-
time for Data-flow Execution of Tasks on Many-cores. ACM Trans. Archit. Code
Optim. 14, 3, Article 31 (August 2017), 23 pages (2017). https://doi.org/10.1145/
3127068

[6] H. M. Ghader, K. Fakhr, M. Javadi, and G. Bakhshzadeh. 2010. Static task graph
scheduling using learner Genetic Algorithm. In 2010 International Conference
of Soft Computing and Pattern Recognition. 357–362. https://doi.org/10.1109/
SOCPAR.2010.5686731

[7] S. Gupta, V. Kumar, and G. Agarwal. 2010. Task Scheduling in Multiprocessor
System Using Genetic Algorithm. In 2010 Second International Conference on
Machine Learning and Computing. 267–271. https://doi.org/10.1109/ICMLC.2010.
50

[8] Kanpur Genetic Algorithms Laboratory. 2011. Multi-objective NSGA-II code in
C. http://www.iitk.ac.in/kangal/codes.shtml. (2011). [Online].

[9] Kamaljit Kaur, Amit Chhabra, and Gurvinder Singh. 2010. Heuristics based
genetic algorithm for scheduling static tasks in homogeneous parallel system.
International Journal of Computer Science and Security (IJCSS) 4, 2 (2010), 183–198.

[10] T. Lewis and H. El-Rewini. 1993. Parallax: a tool for parallel program scheduling.
IEEE Parallel Distributed Technology: Systems Applications 1, 2 (May 1993), 62–72.
https://doi.org/10.1109/88.218176

[11] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193–212.

[12] M. M. Najafabadi, M. Zali, S. Taheri, and F. Taghiyareh. 2007. Static Task
Scheduling Using Genetic Algorithm and Reinforcement Learning. In 2007
IEEE Symposium on Computational Intelligence in Scheduling. 226–230. https:
//doi.org/10.1109/SCIS.2007.367694

[13] R. A. Al Na’mneh and K. A. Darabkh. 2013. A new genetic-based algorithm for
scheduling static tasks in homogeneous parallel systems. In 2013 International
Conference on Robotics, Biomimetics, Intelligent Computational Systems. 46–50.
https://doi.org/10.1109/ROBIONETICS.2013.6743576

[14] OpenMP Architecture Review Board. 2015. OpenMP 4.5 API C/C++ Syntax
Reference Guide. http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.
(2015). [Online].

[15] S. Pei, J. Wang, W. Cui, L. Jiang, T. Geng, J. L. Gaudiot, and S. Zuckerman. 2016.
Codelet Scheduling by Genetic Algorithm. In 2016 IEEE Trustcom/BigDataSE/ISPA.
1492–1499. https://doi.org/10.1109/TrustCom.2016.0233

[16] N. Srinivas and Kalyanmoy Deb. 1994. Muiltiobjective Optimization Using Non-
dominated Sorting in Genetic Algorithms. Evolutionary Computation 2, 3 (1994),
221–248. https://doi.org/10.1162/evco.1994.2.3.221

[17] K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, and P. Trancoso.
2008. TFlux: A Portable Platform for Data-Driven Multithreading on Commodity
Multicore Systems. In 37th International Conference on Parallel Processing. 25–34.

[18] P. Virouleau, P. Brunet, F. Broquedis, N. Furmento, S. Thibault, O. Aumage, and
T. Gautier. 2014. Evaluation of OpenMP Dependent Tasks with the KASTORS
Benchmark Suite. In Proceedings of the 10th International Workshop on OpenMP
(IWOMP 2014). 16–29.

[19] Yun Wen, Hua Xu, and Jiadong Yang. 2011. A heuristic-based hybrid genetic-
variable neighborhood search algorithm for task scheduling in heterogeneous
multiprocessor system. Information Sciences 181, 3 (2011), 567 – 581. https:
//doi.org/10.1016/j.ins.2010.10.001

[20] A. Y. Zomaya, C. Ward, and B. Macey. 1999. Genetic scheduling for par-
allel processor systems: comparative studies and performance issues. IEEE
Transactions on Parallel and Distributed Systems 10, 8 (Aug 1999), 795–812.
https://doi.org/10.1109/71.790598

https://github.com/diavastos/SWITCHES
https://github.com/diavastos/SWITCHES
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/3127068
https://doi.org/10.1145/3127068
https://doi.org/10.1109/SOCPAR.2010.5686731
https://doi.org/10.1109/SOCPAR.2010.5686731
https://doi.org/10.1109/ICMLC.2010.50
https://doi.org/10.1109/ICMLC.2010.50
http://www.iitk.ac.in/kangal/codes.shtml
https://doi.org/10.1109/88.218176
https://doi.org/10.1109/SCIS.2007.367694
https://doi.org/10.1109/SCIS.2007.367694
https://doi.org/10.1109/ROBIONETICS.2013.6743576
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.1109/TrustCom.2016.0233
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1016/j.ins.2010.10.001
https://doi.org/10.1016/j.ins.2010.10.001
https://doi.org/10.1109/71.790598

	Abstract
	1 Introduction
	2 The SWITCHES System
	3 The NSGA-II Genetic Algorithm
	4 Auto-tuning Scheduling
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Synthetic Applications
	5.3 Data-Parallel Applications
	5.4 Task-Parallel Applications
	5.5 Seed Optimization
	5.6 Summary

	6 Related Work
	7 Conclusions
	References

